OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 2950–2960

Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas

Emilio J. Gualda, Javier R. Vázquez de Aldana, M. Carmen Martínez-García, Pablo Moreno, Juan Hernández-Toro, Luis Roso, Pablo Artal, and Juan M. Bueno  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 2950-2960 (2011)
http://dx.doi.org/10.1364/BOE.2.002950


View Full Text Article

Acrobat PDF (6790 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures.

© 2011 OSA

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Optical Therapies and Photomodificaton

History
Original Manuscript: July 1, 2011
Revised Manuscript: September 27, 2011
Manuscript Accepted: September 27, 2011
Published: October 3, 2011

Virtual Issues
Advances in Optics for Biotechnology, Medicine, and Surgery (2011) Biomedical Optics Express

Citation
Emilio J. Gualda, Javier R. Vázquez de Aldana, M. Carmen Martínez-García, Pablo Moreno, Juan Hernández-Toro, Luis Roso, Pablo Artal, and Juan M. Bueno, "Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas," Biomed. Opt. Express 2, 2950-2960 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-2950


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. M. Krasnov, “Q-switched laser goniopuncture,” Arch. Ophthalmol. 92(1), 37–41 (1974). [PubMed]
  2. D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980). [PubMed]
  3. R. M. Klapper, “Q-switched neodymium:YAG laser iridotomy,” Ophthalmology 91(9), 1017–1021 (1984). [PubMed]
  4. A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997). [CrossRef] [PubMed]
  5. A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).
  6. R. R. Krueger, S. L. Trokel, and H. D. Schubert, “Interaction of ultraviolet laser light with the cornea,” Invest. Ophthalmol. Vis. Sci. 26(11), 1455–1464 (1985). [PubMed]
  7. I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990). [CrossRef] [PubMed]
  8. I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg. 10(5), 498–510 (1994). [PubMed]
  9. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  10. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000). [CrossRef] [PubMed]
  11. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  12. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001). [CrossRef] [PubMed]
  13. L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003). [PubMed]
  14. R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998). [PubMed]
  15. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24(6), 1562–1568 (2007). [CrossRef] [PubMed]
  16. M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004). [CrossRef] [PubMed]
  17. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002). [PubMed]
  18. G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Wavelength dependence of femtosecond laser ablation threshold of corneal stroma,” Opt. Express 16(6), 4121–4129 (2008). [CrossRef] [PubMed]
  19. R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997). [PubMed]
  20. H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007). [CrossRef] [PubMed]
  21. H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005). [CrossRef] [PubMed]
  22. V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007). [CrossRef] [PubMed]
  23. T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008). [CrossRef] [PubMed]
  24. L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008). [CrossRef] [PubMed]
  25. H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009). [CrossRef] [PubMed]
  26. U. Vossmerbaeumer and J. B. Jonas, “Structure of intracorneal femtosecond laser pulse effects in conical incision profiles,” Graefes Arch. Clin. Exp. Ophthalmol. 246(7), 1017–1020 (2008). [CrossRef] [PubMed]
  27. M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004). [CrossRef] [PubMed]
  28. B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007). [CrossRef] [PubMed]
  29. E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010). [CrossRef] [PubMed]
  30. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010). [CrossRef] [PubMed]
  31. J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express 2(6), 1637–1648 (2011). [CrossRef] [PubMed]
  32. L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010). [CrossRef] [PubMed]
  33. L. Jay, A. Brocas, K. Singh, J. C. Kieffer, I. Brunette, and T. Ozaki, “Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy,” Opt. Express 16(21), 16284–16293 (2008). [CrossRef] [PubMed]
  34. S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009). [CrossRef] [PubMed]
  35. B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007). [CrossRef] [PubMed]
  36. N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008). [CrossRef] [PubMed]
  37. M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005). [CrossRef] [PubMed]
  38. J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011). [CrossRef] [PubMed]
  39. J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011). [CrossRef] [PubMed]
  40. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008). [CrossRef] [PubMed]
  41. V. Hovhannisyan, A. Ghazaryan, Y. F. Chen, S. J. Chen, and C. Y. Dong, “Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser,” Opt. Express 18(23), 24037–24047 (2010). [CrossRef] [PubMed]
  42. T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008). [CrossRef] [PubMed]
  43. B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006). [CrossRef] [PubMed]
  44. M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3413 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited