OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3207–3222

High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware

Manuel Freiberger, Herbert Egger, Manfred Liebmann, and Hermann Scharfetter  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 3207-3222 (2011)
http://dx.doi.org/10.1364/BOE.2.003207


View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images.

© 2011 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: June 16, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 16, 2011
Published: October 28, 2011

Citation
Manuel Freiberger, Herbert Egger, Manfred Liebmann, and Hermann Scharfetter, "High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware," Biomed. Opt. Express 2, 3207-3222 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-3207


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Mordon, V. Maunoury, J. M. Devoisselle, Y. Abbas, and D. Coustaud, “Characterization of tumorous and normal tissue using a pH-sensitive fluorescence indicator (5,6-carboxyfluorescein) in vivo,” J. Photochem. Photobiol. B13, 307–314 (1992). [CrossRef] [PubMed]
  2. I. Gannot, I. Ron, F. Hekmat, V. Chernomordik, and A. Gandjbakhche, “Functional optical detection based on pH dependent fluorescence lifetime,” Lasers Surg. Med.35, 342–348 (2004). [CrossRef] [PubMed]
  3. E. Shives, Y. Xu, and H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express10, 1557–1562 (2002). [PubMed]
  4. B. Zhang, X. Yang, F. Yang, X. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express18, 20201–20214 (2010). [CrossRef] [PubMed]
  5. J. Prakash, V. Chandrasekharan, V. Upendra, and P. K. Yalavarthy, “Accelerating frequency-domain diffuse optical tomographic image reconstruction using graphics processing units,” J. Biomed. Opt.15, 066009 (2010). [CrossRef]
  6. F. Knoll, M. Freiberger, K. Bredies, and R. Stollberger, “AGILE: An open source library for image reconstruction using graphics card hardware acceleration,” in “Proceedings of the 19th Scientific Meeting and Exhibition of ISMRM, Montreal, CA,” (2011), p. 2554.
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl.15, R41–R93 (1999). [CrossRef]
  8. A. Joshi, W. Bangerth, and W. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express12, 5402–5417 (2004). [CrossRef] [PubMed]
  9. S. R. Arridge and M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (TOAST),” in “Mathematical Methods in Medical Imaging II,”, D. C. Wilson and J. N. Wilson, eds. (1993), Proc. SPIE2035, pp. 218–229. [CrossRef]
  10. E. M. Sevick and B. Chance, “Photon migration in a model of the head measured using time and frequency domain techniques: potentials of spectroscopy and imaging,” in “Time-Resolved Spectroscopy and Imaging of Tissues,”, B. Chance and A. Katzir, eds. (1991), Proc. SPIE1431, pp. 84–96. [CrossRef]
  11. S. R. Arridge, “Photon-measurement density functions. part I: Analytical forms,” Appl. Opt.34, 7395–7409 (1995). [CrossRef] [PubMed]
  12. A. Bakushinsky, “The problem of the convergence of the iteratively regularized Gauss-Newton method,” Comput. Math. Math. Phys.32, 1353–1359 (1992).
  13. M. Hanke, “Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems,” Numer. Func. Anal. Optim.18, 971–993 (1997). [CrossRef]
  14. D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math.11, 431–441 (1963). [CrossRef]
  15. B. Kaltenbacher, “Some Newton-type methods for the regularization of nonlinear ill-posed problems,” Inv. Probl.13, 729–753 (1997). [CrossRef]
  16. H. Jiang, “Frequency-domain fluorescent diffusion tomography: A finite-element-based algorithm and simulations,” Appl. Opt.37, 5337–5343 (1998). [CrossRef]
  17. R. Roy and E. M. Sevick-Muraca, “Truncated Newtons optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation,” Opt. Express4, 353–371 (1999). [CrossRef] [PubMed]
  18. M. Schweiger, S. R. Arridge, and I. Nissilä, “Gauss–Newton method of image reconstruction in diffuse optical tomography,” Phys. Med. Biol.50, 2365–2386 (2005). [CrossRef] [PubMed]
  19. H. Egger and M. Schlottbom, “Efficient reliable image reconstruction schemes for diffuse optical tomography,” Inv. Probl. Sci. Eng.19, 155–180 (2011). [CrossRef]
  20. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys.32, 992–1000 (2005). [CrossRef] [PubMed]
  21. M. Freiberger, H. Egger, and H. Scharfetter, “Nonlinear inversion schemes for fluorescence optical tomography,” IEEE Trans. Biomed. Eng.57, 2723–2729 (2010). [CrossRef]
  22. D. Göddeke, C. Becker, and S. Turek, “Integrating GPUs as fast co–processors into the parallel FE package FEAST,” in “19th Symposium Simulations Technique,”, M. Becker and H. Szczerbicka, eds., Frontiers in Simulation (SCS Publishing House, 2006), pp. 277–282.
  23. M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector multiplication on GPUs,” IBM Technical Report RC24704, IBM Ltd. (2009).
  24. M. Liebmann, “Efficient PDE solvers on modern hardware with applications in medical and technical sciences,” Ph.D. thesis (University of Graz, 2009).
  25. W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial (SIAM, 2000), 2nd ed. [CrossRef]
  26. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide (SIAM, 1999), 3rd ed. [CrossRef]
  27. B. Dogdas, D. Stout, A. F. Chatziiouannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52, 577–587 (2007). [CrossRef] [PubMed]
  28. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50, 4225–4241 (2005). [CrossRef] [PubMed]
  29. M. Keijzer, W. M. Star, and P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt.27, 1820–1824 (1988). [CrossRef] [PubMed]
  30. A. Joshi, “Adaptive finite element methods for fluorescence enhanced optical tomography,” Ph.D. thesis (Texas A&M University, 2005).
  31. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40, 575–583 (1976). [PubMed]
  32. J. Schöberl, “NETGEN - an advancing front 2D/3D-mesh generator based on abstract rules,” Comput. Vis. Sci.1, 41–52 (1997). [CrossRef]
  33. NVIDIA, NVIDIA CUDA Programming Guide 2.0 (NVIDIA Cooperation, 2008).
  34. N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on throughput-oriented processors,” in “SC ’09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis,” (ACM, 2009), pp. 1–11.
  35. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU,” Int. J. Comput. Sci. Eng.4, 254–269 (2009). [CrossRef]
  36. M. Köster, D. Göddeke, H. Wobker, and S. Turek, “How to gain speedups of 1000 on single processors with fast FEM solvers – benchmarking numerical and computational efficiency,” Tech. rep., Fakultät für Mathematik, TU Dortmund (2008). Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 382.
  37. V. A. Morozov, “On the solution of functional equations by the method of regularization,” Soviet Math. Dokl.7, 414–417 (1966).
  38. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, 1996).
  39. P. C. Hansen, Rank-Defficient and Discrete Ill-Posed Problems (SIAM, 1998). [CrossRef]
  40. G. Wahba, Spline Models for Observational Data (SIAM, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited