OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 12 — Dec. 1, 2011
  • pp: 3232–3247

Corneal topography from spectral optical coherence tomography (sOCT)

Sergio Ortiz, Damian Siedlecki, Pablo Pérez-Merino, Noelia Chia, Alberto de Castro, Maciej Szkulmowski, Maciej Wojtkowski, and Susana Marcos  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 12, pp. 3232-3247 (2011)
http://dx.doi.org/10.1364/BOE.2.003232


View Full Text Article

Enhanced HTML    Acrobat PDF (1696 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to obtain accurate corneal topography from a spectral optical coherence tomography (sOCT) system. The method includes calibration of the device, compensation of the fan (or field) distortion introduced by the scanning architecture, and image processing analysis for volumetric data extraction, segmentation and fitting. We present examples of three-dimensional (3-D) surface topography measurements on spherical and aspheric lenses, as well as on 10 human corneas in vivo. Results of sOCT surface topography (with and without fan-distortion correction) were compared with non-contact profilometry (taken as reference) on a spherical lens, and with non-contact profilometry and state-of-the art commercial corneal topography instruments on aspheric lenses and on subjects. Corneal elevation maps from all instruments were fitted by quadric surfaces (as well as by tenth-order Zernike polynomials) using custom routines. We found that the discrepancy in the estimated radius of curvature from nominal values in artificial corneas decreased from 4.6% (without fan distortion correction) to 1.6% (after fan distortion correction), and the difference in the asphericity decreased from 130% to 5%. In human corneas, the estimated corneal radius of curvature was not statistically significantly different across instruments. However, a Bland-Altman analysis showed consistent differences in the estimated asphericity and corneal shape between sOCT topographies without fan distortion correction and the rest of the measurements.

© 2011 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: September 7, 2011
Revised Manuscript: October 20, 2011
Manuscript Accepted: October 20, 2011
Published: November 4, 2011

Citation
Sergio Ortiz, Damian Siedlecki, Pablo Pérez-Merino, Noelia Chia, Alberto de Castro, Maciej Szkulmowski, Maciej Wojtkowski, and Susana Marcos, "Corneal topography from spectral optical coherence tomography (sOCT)," Biomed. Opt. Express 2, 3232-3247 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-12-3232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  3. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005). [CrossRef] [PubMed]
  4. G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol.137(1), 156–169 (2004). [CrossRef] [PubMed]
  5. R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006). [CrossRef] [PubMed]
  6. T. Simpson and D. Fonn, “Optical coherence tomography of the anterior segment,” Ocul. Surf.6(3), 117–127 (2008). [PubMed]
  7. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001). [PubMed]
  8. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  9. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  10. H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol.145(2), 228–232.e1 (2008). [CrossRef] [PubMed]
  11. S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.43(6), 1791–1795 (2002). [PubMed]
  12. J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol.245(3), 423–425 (2007). [CrossRef] [PubMed]
  13. R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol.91(8), 1023–1026 (2007). [CrossRef] [PubMed]
  14. S. Radhakrishnan, Y. Li, and D. Huang, “Chapter 10: Quantitative measurement of the anterior chamber angle with optical coherence tomography” pp. 109–116 in Anterior Segment Optical Coherence Tomography, R. F. Steinert, D Huang eds. (Slack Incorporated, Thorofare, USA 2008).
  15. E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology114(10), 1842–1847.e2 (2007). [CrossRef] [PubMed]
  16. R. F. Steinert, D Huang eds. Anterior Segment Optical Coherence Tomography, (Slack Incorporated, Thorofare, USA 2008).
  17. M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE7550, 755016, 755016-6 (2010). [CrossRef]
  18. M. C. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007). [CrossRef] [PubMed]
  19. M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006). [CrossRef] [PubMed]
  20. Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology115(12), 2159–2166 (2008). [CrossRef] [PubMed]
  21. L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt.13(5), 054054 (2008). [CrossRef] [PubMed]
  22. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010). [CrossRef] [PubMed]
  23. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011). [CrossRef] [PubMed]
  24. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  25. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  26. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010). [CrossRef] [PubMed]
  27. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010). [CrossRef] [PubMed]
  28. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002). [PubMed]
  29. J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol.37(4), 305–311 (2005). [CrossRef]
  30. Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt.47(32), 5976–5985 (2008). [CrossRef] [PubMed]
  31. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004). [CrossRef] [PubMed]
  32. M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt.24(6), 562–571 (2004). [CrossRef] [PubMed]
  33. R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol.119(1), 1–17 (1953). [PubMed]
  34. D. A. Benedetto, T. E. Clinch, and P. R. Laibson, “In vivo observation of tear dynamics using fluorophotometry,” Arch. Ophthalmol.102(3), 410–412 (1984). [PubMed]
  35. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  36. N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans. Syst. Man Cybern.66, 9–62 (1979).
  37. J. Schwiegerling, J. E. Greivenkamp, and J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A12(10), 2105–2113 (1995). [CrossRef] [PubMed]
  38. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg.18(3), 263–270 (2002). [PubMed]
  39. C. Roberts, “Corneal topography: a review of terms and concepts,” J. Cataract Refract. Surg.22(5), 624–629 (1996). [PubMed]
  40. D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A21(6), 926–936 (2004). [CrossRef] [PubMed]
  41. A. Pérez-Escudero, C. Dorronsoro, S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J Opt Soc Am A Image Sci Vis 27, 1541–1548 (2010).
  42. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009). [CrossRef] [PubMed]
  43. P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl.36, 609–619 (2006).
  44. C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express14(13), 6142–6156 (2006). [CrossRef] [PubMed]
  45. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express17(17), 15292–15307 (2009). [CrossRef] [PubMed]
  46. L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A24(9), 2783–2796 (2007). [CrossRef] [PubMed]
  47. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986). [CrossRef] [PubMed]
  48. G. O. Waring, “Making sense of keratospeak II: Proposed conventional terminology for corneal topography,” Refract. Corneal Surg.5(6), 362–367 (1989). [PubMed]
  49. S. D. Klyce and S. E. Wilson, “Methods of analysis of corneal topography,” Refract. Corneal Surg.5(6), 368–371 (1989). [PubMed]
  50. J. W. Warnicki, P. G. Rehkopf, D. Y. Curtin, S. A. Burns, R. C. Arffa, and J. C. Stuart, “Corneal topography using computer analyzed rasterstereographic images,” Appl. Opt.27(6), 1135–1140 (1988). [CrossRef] [PubMed]
  51. W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci.77(9), 483–491 (2000). [CrossRef] [PubMed]
  52. P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci.79(3), 175–183 (2002). [CrossRef]
  53. A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009). [CrossRef] [PubMed]
  54. T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci.50(6), 2660–2665 (2009). [CrossRef] [PubMed]
  55. D. Chen and A. K. C. Lam, “Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye,” J. Cataract Refract. Surg.33(3), 448–454 (2007). [CrossRef] [PubMed]
  56. H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg.34(1), 103–113 (2008). [CrossRef] [PubMed]
  57. S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg.35(6), 1072–1081 (2009). [CrossRef] [PubMed]
  58. H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg.34(5), 727–734 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2179 KB)     
» Media 2: AVI (811 KB)     
» Media 3: AVI (633 KB)     
» Media 4: AVI (860 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited