OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 12 — Dec. 1, 2011
  • pp: 3248–3258

Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?

Manzoor Ahmad, Sanaz Alali, Anthony Kim, Michael F. G. Wood, Masroor Ikram, and I. Alex Vitkin  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 12, pp. 3248-3258 (2011)
http://dx.doi.org/10.1364/BOE.2.003248


View Full Text Article

Enhanced HTML    Acrobat PDF (1979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We here investigate polarimetric behavior of thick samples of porcine liver, Intralipid, and microsphere-based tissue phantoms whose absorption and scattering properties are matched. Using polarized light we measured reflection mode Mueller matrices and derived linear/circular/total depolarization rates, based on polar decomposition. According to our results, phantoms exhibit greater depolarization rates in the backscattering geometry than the liver sample. The enhanced tissue polarization preservation differs from previous reports of polarimetric transmission studies, with the likely cause of this difference being the angular dependence of the single-scattering phase function. Also, Intralipid approximated polarimetric liver behavior well, whereas the polystyrene phantoms did not.

© 2011 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.4020) Scattering : Mie theory
(110.0113) Imaging systems : Imaging through turbid media
(290.5855) Scattering : Scattering, polarization

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: September 7, 2011
Revised Manuscript: October 5, 2011
Manuscript Accepted: October 6, 2011
Published: November 4, 2011

Citation
Manzoor Ahmad, Sanaz Alali, Anthony Kim, Michael F. G. Wood, Masroor Ikram, and I. Alex Vitkin, "Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?," Biomed. Opt. Express 2, 3248-3258 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-12-3248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002). [CrossRef] [PubMed]
  2. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000). [CrossRef] [PubMed]
  3. M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010). [CrossRef] [PubMed]
  4. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008). [CrossRef]
  5. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002). [CrossRef] [PubMed]
  6. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007). [CrossRef] [PubMed]
  7. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008). [CrossRef] [PubMed]
  8. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009). [CrossRef]
  9. P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008). [CrossRef]
  10. J. C. Ramella-Roman and D. D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE6080, 60800M (2006). [CrossRef]
  11. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express18(10), 10200–10208 (2010). [CrossRef] [PubMed]
  12. B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther.8(2), 156–164 (2006). [CrossRef] [PubMed]
  13. G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng.39(7), 752–756 (1992). [CrossRef] [PubMed]
  14. M. F. G. Wood, N. Ghosh, X. Guo, and I. A. Vitkin, “Toward noninvasive glucose sensing using polarization analysis of multiply scattered light,” in Handbook of Optical Sensing of Gloucose in Biological Fluids and Tissues, V. V. Tuchin, ed. (CRC Press, 2008), pp. 527–558
  15. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992). [CrossRef] [PubMed]
  16. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994). [CrossRef] [PubMed]
  17. A. D. Kim and M. Moscoso, “Influence of the relative refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(2), 026612 (2001). [CrossRef] [PubMed]
  18. N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004). [CrossRef] [PubMed]
  19. N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006). [CrossRef]
  20. X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010). [CrossRef] [PubMed]
  21. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett.24(15), 1044–1046 (1999). [CrossRef] [PubMed]
  22. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett.25(4), 239–241 (2000). [CrossRef] [PubMed]
  23. V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt.38(19), 4252–4261 (1999). [CrossRef] [PubMed]
  24. N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003). [CrossRef]
  25. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002). [CrossRef] [PubMed]
  26. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010). [CrossRef] [PubMed]
  27. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  28. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, NewYork,1998).
  29. M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010). [CrossRef]
  30. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006). [CrossRef] [PubMed]
  31. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009). [CrossRef] [PubMed]
  32. X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt.48(14), 2625–2631 (2009). [CrossRef] [PubMed]
  33. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010). [CrossRef]
  34. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996). [CrossRef]
  35. S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).
  36. J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001). [CrossRef] [PubMed]
  37. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  38. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt.37(13), 2788–2797 (1998). [CrossRef] [PubMed]
  39. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998). [CrossRef] [PubMed]
  40. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996). [CrossRef] [PubMed]
  41. H. C. V. de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)
  42. R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt.28(12), 2273–2279 (1989). [CrossRef] [PubMed]
  43. L. O. Reynolds and N. J. McCormick, “Approximation two parameter phase function for light scattering,” J. Opt. Soc. Am.70(10), 1206–1212 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited