OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 491–504

Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography

Roman V. Kuranov, Jinze Qiu, Austin B. McElroy, Arnold Estrada, Anthony Salvaggio, Jeffrey Kiel, Andrew K. Dunn, Timothy Q. Duong, and Thomas E. Milner  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 3, pp. 491-504 (2011)
http://dx.doi.org/10.1364/BOE.2.000491


View Full Text Article

Enhanced HTML    Acrobat PDF (1672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Non-invasive depth-resolved measurement of hemoglobin oxygen saturation (SaO2) levels in discrete blood vessels may have implications for diagnosis and treatment of various pathologies. We introduce a novel Dual-Wavelength Photothermal (DWP) Optical Coherence Tomography (OCT) for non-invasive depth-resolved measurement of SaO2 levels in a blood vessel phantom. DWP OCT SaO2 is linearly correlated with blood-gas SaO2 measurements. We demonstrate 6.3% precision in SaO2 levels measured a phantom blood vessel using DWP-OCT with 800 and 765 nm excitation wavelengths. Sources of uncertainty in SaO2 levels measured with DWP-OCT are identified and characterized.

© 2011 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.1030) Spectroscopy : Absorption

ToC Category:
Noninvasive Optical Diagnostics

History
Original Manuscript: December 9, 2010
Revised Manuscript: January 24, 2011
Manuscript Accepted: January 29, 2011
Published: February 3, 2011

Citation
Roman V. Kuranov, Jinze Qiu, Austin B. McElroy, Arnold Estrada, Anthony Salvaggio, Jeffrey Kiel, Andrew K. Dunn, Timothy Q. Duong, and Thomas E. Milner, "Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography," Biomed. Opt. Express 2, 491-504 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000). [CrossRef] [PubMed]
  2. D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009). [CrossRef] [PubMed]
  3. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986). [CrossRef] [PubMed]
  4. Y. B. Sirotin and A. Das, “Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity,” Nature 457(7228), 475–479 (2009). [CrossRef] [PubMed]
  5. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977). [CrossRef] [PubMed]
  6. E. O. R. Reynolds, J. S. Wyatt, D. Azzopardi, D. T. Delpy, E. B. Cady, M. Cope, and S. Wray, “New non-invasive methods for assessing brain oxygenation and haemodynamics,” Br. Med. Bull. 44(4), 1052–1075 (1988). [PubMed]
  7. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995). [CrossRef] [PubMed]
  8. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef] [PubMed]
  9. M. J. Grap, “Pulse oximetry: update 2002,” Crit. Care Nurse 22, 8 (2002).
  10. V. Kamat, “Pulse oximetry,” Ind. J. Anaesthesia 46, 261–268 (2002).
  11. R. C. McMorrow and M. G. Mythen, “Pulse oximetry,” Curr. Opin. Crit. Care 12(3), 269–271 (2006). [PubMed]
  12. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000). [CrossRef] [PubMed]
  13. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009). [CrossRef] [PubMed]
  14. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28(16), 1436–1438 (2003). [CrossRef] [PubMed]
  15. L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007). [CrossRef] [PubMed]
  16. C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33(5), 416–418 (2008). [CrossRef] [PubMed]
  17. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010). [CrossRef] [PubMed]
  18. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005). [CrossRef] [PubMed]
  19. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1(1), 310–317 (2010). [CrossRef] [PubMed]
  20. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000). [CrossRef] [PubMed]
  21. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  22. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007). [CrossRef] [PubMed]
  23. R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010). [CrossRef]
  24. A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express 1(1), 2–16 (2010). [CrossRef] [PubMed]
  25. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  26. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  27. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. H. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010). [CrossRef] [PubMed]
  28. K. Dalziel and J. R. P. O’Brien, “Side reactions in the deoxygenation of dilute oxyhaemoglobin solutions by sodium dithionite,” Biochem. J. 67(1), 119–124 (1957). [PubMed]
  29. S. Prahl, “Optical Absorption of Hemoglobin” (1999), retrieved http://omlc.ogi.edu/spectra/hemoglobin/ .
  30. W. A. Craft and L. H. Moe, “The hemoglobin level of pigs at various ages,” J. Anim. Sci. 12, 127–131 (1934).
  31. H. El-Kashef and M. A. Atia, “Wavelength and temperature dependence properties of human blood-serum,” Opt. Laser Technol. 31(2), 181–189 (1999). [CrossRef]
  32. A. J. Welch and M. J. C. van Gemert, Optical-Thermal response of laser-irradiated tissue, Laser, Photonics, and Electro-Optics (Plenum Press, New York, 1995).
  33. A. S. T. Blake, G. W. Petley, and C. D. Deakin, “Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits,” Br. J. Anaesth. 84(1), 28–32 (2000). [PubMed]
  34. J. D. Cutnell and K. W. Johnson, Physics, 4th ed. (Wiley, New York, 1997).
  35. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002). [CrossRef] [PubMed]
  36. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009). [CrossRef] [PubMed]
  37. D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett. 23(5), 319–321 (1998). [CrossRef] [PubMed]
  38. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998). [CrossRef]
  39. J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105(19), 198302 (2010). [CrossRef] [PubMed]
  40. V. V. Tuchin, X. Q. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41(1), 258–271 (2002). [CrossRef] [PubMed]
  41. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited