OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 850–857

Clean image synthesis and target numerical marching for optical imaging with backscattering light

Min Xu, Yang Pu, and Wubao Wang  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 4, pp. 850-857 (2011)
http://dx.doi.org/10.1364/BOE.2.000850


View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a “clean” image of a homogeneous host medium numerically from a set of raster-scanned “dirty” backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(290.1350) Scattering : Backscattering
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: December 13, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: February 25, 2011
Published: March 14, 2011

Citation
Min Xu, Yang Pu, and Wubao Wang, "Clean image synthesis and target numerical marching for optical imaging with backscattering light," Biomed. Opt. Express 2, 850-857 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-850


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009). [CrossRef]
  2. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999). [CrossRef]
  3. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009). [CrossRef]
  4. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005). [CrossRef]
  5. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006). [CrossRef]
  6. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008). [CrossRef]
  7. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005). [CrossRef]
  8. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005). [CrossRef]
  9. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004). [CrossRef]
  10. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Scientific, 2006).
  11. J. Ripoll and V. Ntziachristos, “From Finite to Infinite Volumes: Removal of Boundaries in Diffuse Wave Imaging,” Phys. Rev. Lett. 96(17), 173903 (2006). [CrossRef]
  12. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992). [CrossRef]
  13. K. M. Case, “Transfer problems and the reciprocity principle,” Rev. Mod. Phys. 29(4), 651–663 (1957). [CrossRef]
  14. W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104(16), 3996–4000 (2000). [CrossRef]
  15. M. Xu, W. Cai, M. Lax, and R. R. Alfano, “A photon transport forward model for imaging in turbid media,” Opt. Lett. 26(14), 1066–1068 (2001). [CrossRef]
  16. M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002). [CrossRef]
  17. J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).
  18. T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B 79(3), 231–241 (2005). [CrossRef]
  19. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007). [CrossRef]
  20. Y. Pu, “Time-resolved spectroscopy and near infrared imaging for prostate cancer detection: receptor-targeted and native biomarker,” Ph D. thesis (City University of New York, 2010).
  21. V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70(5), 056616 (2004). [CrossRef]
  22. C. H. Huh, M. S. Bhutani, and E. B. Farfan, “andW. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Clin. Phys. Physiol. Meas. 24(15–N), 22 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited