OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1069–1081

Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography

Ivan T. Lima, Jr., Anshul Kalra, and Sherif S. Sherif  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1069-1081 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed an importance sampling based method that significantly speeds up the calculation of the diffusive reflectance due to ballistic and to quasi-ballistic components of photons scattered in turbid media: Class I diffusive reflectance. These components of scattered photons make up the signal in optical coherence tomography (OCT) imaging. We show that the use of this method reduces the computation time of this diffusive reflectance in time-domain OCT by up to three orders of magnitude when compared with standard Monte Carlo simulation. Our method does not produce a systematic bias in the statistical result that is typically observed in existing methods to speed up Monte Carlo simulations of light transport in tissue. This fast Monte Carlo calculation of the Class I diffusive reflectance can be used as a tool to further study the physical process governing OCT signals, e.g., obtain the statistics of the depth-scan, including the effects of multiple scattering of light, in OCT. This is an important prerequisite to future research to increase penetration depth and to improve image extraction in OCT.

© 2011 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: February 3, 2011
Revised Manuscript: March 31, 2011
Manuscript Accepted: March 31, 2011
Published: April 4, 2011

Ivan T. Lima, Anshul Kalra, and Sherif S. Sherif, "Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography," Biomed. Opt. Express 2, 1069-1081 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  2. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006). [CrossRef] [PubMed]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  4. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007). [CrossRef] [PubMed]
  5. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999). [CrossRef] [PubMed]
  6. S. S. Sherif, C. C. Rosa, C. Flueraru, S. Chang, Y. Mao, and A. G. Podoleanu, “Statistics of the depth-scan photocurrent in time-domain optical coherence tomography,” J. Opt. Soc. Am. A 25(1), 16–20 (2008). [CrossRef] [PubMed]
  7. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34(25), 5699–5707 (1995). [CrossRef] [PubMed]
  8. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983). [CrossRef] [PubMed]
  9. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  10. N. G. Chen and J. Bai, “Estimation of quasi-straightforward propagating light in tissues,” Phys. Med. Biol. 44(7), 1669–1676 (1999). [CrossRef] [PubMed]
  11. N. Chen, “Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry,” Appl. Opt. 46(10), 1597–1603 (2007). [CrossRef] [PubMed]
  12. R. Y. Rubinstein, Simulation and the Monte Carlo Method (Wiley, 1981).
  13. G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(3), 310–312 (2002). [CrossRef]
  14. S. L. Fogal, G. Biondini, and W. L. Kath, “Multiple importance sampling for first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(9), 1273–1275 (2002). [CrossRef]
  15. I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett. 15(1), 45–47 (2003). [CrossRef]
  16. I. T. Lima, A. O. Lima, G. Biondini, C. R. Menyuk, and W. L. Kath, “A comparative study of single section polarization-mode dispersion compensators,” J. Lightwave Technol. 22(4), 1023–1032 (2004). [CrossRef]
  17. J. M. Schmitt and K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A 13(5), 952–961 (1996). [CrossRef] [PubMed]
  18. H. Iwabuchi, ““Efficient Monte Carlo method for radiative transfer modeling,” J. of the Atmosph,” Science 63, 2324–2339 (2006).
  19. I. T. Lima, Jr., “Advanced Monte Carlo methods applied to Optical Coherence Tomography” (invited), presented at the 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Belém, Brazil, 3–6 Nov. 2009.
  20. “Monte Carlo simulations,” Oregon Medical Laser Center, accessed January 1, 2009, http://omlc.ogi.edu/software/mc/
  21. S. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory (Prentice-Hall, 1993).
  22. E. Hecht, Optics, 4th ed. (Pearson Addison Wesley, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited