OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1135–1146

Cornea microstructure and mechanical responses measured with nonlinear optical and optical coherence microscopy using sub-10-fs pulses

Qiaofeng Wu, Brian E. Applegate, and Alvin T. Yeh  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1135-1146 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A combined nonlinear optical microscopy (NLOM) and optical coherence microscopy (OCM) imaging system has been assembled in order to simultaneously capture co-registered volumetric images of corneal morphology and biochemistry. Tracking of cell nuclei visible in the OCM volume enabled the calculation of strain depth profile in response to changes in intraocular pressure for rabbit cornea stroma. Results revealed nonlinear responses with a depth dependent strain distribution, exhibiting smaller strains in the anterior and larger strains in the posterior stroma. Cross-sectional images of collagen lamellae, visible in NLOM, showed inhomogeneous collagen structure along the anterior-posterior direction that correlated well with the noted heterogeneous corneal mechanical responses.

© 2011 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.5810) Medical optics and biotechnology : Scanning microscopy
(180.1790) Microscopy : Confocal microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Multimodal Imaging

Original Manuscript: February 11, 2011
Revised Manuscript: March 25, 2011
Manuscript Accepted: April 8, 2011
Published: April 11, 2011

Qiaofeng Wu, Brian E. Applegate, and Alvin T. Yeh, "Cornea microstructure and mechanical responses measured with nonlinear optical and optical coherence microscopy using sub-10-fs pulses," Biomed. Opt. Express 2, 1135-1146 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Kirwan and M. O’Keefe, “Measurement of intraocular pressure in LASIK and LASEK patients using the Reichert Ocular Response Analyzer and Goldmann applanation tonometry,” J. Refract. Surg. 24(4), 366–370 (2008). [PubMed]
  2. M. Kohlhaas, E. Spoerl, A. G. Boehm, and K. Pollack, “A correction formula for the real intraocular pressure after LASIK for the correction of myopic astigmatism,” J. Refract. Surg. 22(3), 263–267 (2006). [PubMed]
  3. J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis,” J. Cataract Refract. Surg. 31(1), 146–155 (2005). [CrossRef] [PubMed]
  4. J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47.e1 (2007). [CrossRef] [PubMed]
  5. C. Roberts, “The cornea is not a piece of plastic,” J. Refract. Surg. 16(4), 407–413 (2000). [PubMed]
  6. J. O. Hjortdal, “Regional elastic performance of the human cornea,” J. Biomech. 29(7), 931–942 (1996). [CrossRef] [PubMed]
  7. B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” J. Biomech. 19(10), 847–853 (1986). [CrossRef] [PubMed]
  8. T. J. Shin, R. P. Vito, L. W. Johnson, and B. E. McCarey, “The distribution of strain in the human cornea,” J. Biomech. 30(5), 497–503 (1997). [CrossRef] [PubMed]
  9. H. Aghamohammadzadeh, R. H. Newton, and K. M. Meek, “X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus,” Structure 12(2), 249–256 (2004). [PubMed]
  10. M. Abahussin, S. Hayes, N. E. Knox Cartwright, C. S. Kamma-Lorger, Y. Khan, J. Marshall, and K. M. Meek, “3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology,” Invest. Ophthalmol. Vis. Sci. 50(11), 5159–5164 (2009). [CrossRef] [PubMed]
  11. Q. Wu and A. T. Yeh, “Rabbit cornea microstructure response to changes in intraocular pressure visualized by using nonlinear optical microscopy,” Cornea 27(2), 202–208 (2008). [CrossRef] [PubMed]
  12. L. J. Müller, E. Pels, and G. F. J. M. Vrensen, “The specific architecture of the anterior stroma accounts for maintenance of corneal curvature,” Br. J. Ophthalmol. 85(4), 437–443 (2001). [CrossRef] [PubMed]
  13. N. Morishige, W. M. Petroll, T. Nishida, M. C. Kenney, and J. V. Jester, “Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals,” J. Cataract Refract. Surg. 32(11), 1784–1791 (2006). [CrossRef] [PubMed]
  14. A. T. Yeh, N. Nassif, A. Zoumi, and B. J. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27(23), 2082–2084 (2002). [CrossRef] [PubMed]
  15. H.-Y. Tan, Y. Sun, W. Lo, S.-J. Lin, C.-H. Hsiao, Y.-F. Chen, S. C.-M. Huang, W.-C. Lin, S.-H. Jee, H.-S. Yu, and C.-Y. Dong, “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo,” Invest. Ophthalmol. Vis. Sci. 47(12), 5251–5259 (2006). [CrossRef] [PubMed]
  16. T. Møller-Pedersen, H. D. Cavanagh, W. M. Petroll, and J. V. Jester, “Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study,” Ophthalmology 107(7), 1235–1245 (2000). [CrossRef] [PubMed]
  17. H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci. 39(2), 253–262 (1998). [PubMed]
  18. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994). [CrossRef] [PubMed]
  19. A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J. Biomed. Opt. 9(6), 1271–1280 (2004). [CrossRef] [PubMed]
  20. S. Hodson, C. Wigham, L. Williams, K. R. Mayes, and M. V. Graham, “Observation on the human cornea in vitro,” Exp. Eye Res. 32(3), 353–360 (1981). [CrossRef] [PubMed]
  21. A. M. Larson and A. T. Yeh, “Ex vivo characterization of sub-10-fs pulses,” Opt. Lett. 31(11), 1681–1683 (2006). [CrossRef] [PubMed]
  22. A. Labbé, H. Liang, C. Martin, F. Brignole-Baudouin, J.-M. Warnet, and C. Baudouin, “Comparative anatomy of laboratory animal corneas with a new-generation high-resolution in vivo confocal microscope,” Curr. Eye Res. 31(6), 501–509 (2006). [CrossRef] [PubMed]
  23. B. R. Masters and M. Böhnke, “Three-dimensional confocal microscopy of the human cornea in vivo,” Ophthalmic Res. 33(3), 125–135 (2001). [CrossRef] [PubMed]
  24. W. M. Petroll, H. D. Cavanagh, and J. V. Jester, “Three-dimensional imaging of corneal cells using in vivo confocal microscopy,” J. Microsc. 170(Pt 3), 213–219 (1993). [PubMed]
  25. D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178(Pt 1), 20–27 (1995). [PubMed]
  26. H. F. Li, W. M. Petroll, T. Møller-Pedersen, J. K. Maurer, H. D. Cavanagh, and J. V. Jester, “Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF),” Curr. Eye Res. 16(3), 214–221 (1997). [CrossRef] [PubMed]
  27. S. Pang, A. T. Yeh, C. Wang, and K. E. Meissner, “Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10-fs,” J. Biomed. Opt. 14(5), 054041 (2009). [CrossRef] [PubMed]
  28. J. V. Jester, T. Moller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci. 112(Pt 5), 613–622 (1999). [PubMed]
  29. W. Radner and R. Mallinger, “Interlacing of collagen lamellae in the midstroma of the human cornea,” Cornea 21(6), 598–601 (2002). [CrossRef] [PubMed]
  30. W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea 17(5), 537–543 (1998). [CrossRef] [PubMed]
  31. A. Pandolfi and G. A. Holzapfel, “Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations,” J. Biomech. Eng. 130(6), 061006 (2008). [CrossRef] [PubMed]
  32. P. M. Pinsky, D. van der Heide, and D. Chernyak, “Computational modeling of mechanical anisotropy in the cornea and sclera,” J. Cataract Refract. Surg. 31(1), 136–145 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited