OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1233–1242

Dual-channel imaging system for singlet oxygen and photosensitizer for PDT

Seonkyung Lee, Martin E. Isabelle, Kristin L. Gabally-Kinney, Brian W. Pogue, and Steven J. Davis  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1233-1242 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-channel optical system has been developed to provide spatially resolved simultaneous imaging of singlet molecular oxygen (1O2) phosphorescence and photosensitizer (PS) fluorescence produced by the photodynamic process. The current imaging system uses a spectral discrimination method to differentiate the weak 1O2 phosphorescence that peaks near 1.27 μm from PS fluorescence that also occurs in this spectral region. The detection limit of 1O2 emission was determined at a concentration of 500 nM benzoporphyrin derivative monoacid (BPD) in tissue-like phantoms, and these signals observed were proportional to the PS fluorescence. Preliminary in vivo images with tumor laden mice indicate that it is possible to obtain simultaneous images of 1O2 and PS tissue distribution.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5180) Medical optics and biotechnology : Photodynamic therapy

ToC Category:
Optical Therapies and Photomodificaton

Original Manuscript: February 7, 2011
Revised Manuscript: March 30, 2011
Manuscript Accepted: April 13, 2011
Published: April 15, 2011

Seonkyung Lee, Martin E. Isabelle, Kristin L. Gabally-Kinney, Brian W. Pogue, and Steven J. Davis, "Dual-channel imaging system for singlet oxygen and photosensitizer for PDT," Biomed. Opt. Express 2, 1233-1242 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36(7 PT 1), 2326–2329 (1976). [PubMed]
  2. A. C. Kubler, “Photodynamic Therapy,” Med. Laser Appl. 20(1), 37–45 (2005). [CrossRef]
  3. T. J. Farrell, R. P. Hawkes, M. S. Patterson, and B. C. Wilson, “Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry,” Appl. Opt. 37(31), 7168–7183 (1998). [CrossRef] [PubMed]
  4. S. L. Jacques, “Simple theory, measurements, and rules of thumb for dosimetry during photodynamic therapy,” Proc. SPIE 1065, 100–108 (1989).
  5. B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erikson, and M. W. Dewhirst, “Oxygen microelectrode measurements in R3230Ac Tumors during photodynamic therapy with verteporfin,” Proc. SPIE 4248, 144 (2001).
  6. B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001). [CrossRef] [PubMed]
  7. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004). [CrossRef] [PubMed]
  8. D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000). [CrossRef] [PubMed]
  9. V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992). [PubMed]
  10. M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol. 75(4), 382–391 (2002). [CrossRef] [PubMed]
  11. M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005). [PubMed]
  12. M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994). [CrossRef] [PubMed]
  13. S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008). [CrossRef] [PubMed]
  14. S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008). [CrossRef] [PubMed]
  15. H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008). [CrossRef] [PubMed]
  16. L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002). [CrossRef]
  17. I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004). [CrossRef] [PubMed]
  18. M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005). [CrossRef] [PubMed]
  19. T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009). [CrossRef] [PubMed]
  20. Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007). [CrossRef] [PubMed]
  21. M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009). [CrossRef] [PubMed]
  22. B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011). [CrossRef] [PubMed]
  23. S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, J. A. O'Hara, and B. W. Pogue, “A singlet molecular oxygen imaging sensor for photodynamic therapy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BTuC4.
  24. S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010). [CrossRef]
  25. U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol. 45(3), 195–214 (2000). [CrossRef] [PubMed]
  26. L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007). [CrossRef] [PubMed]
  27. J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited