OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1319–1327

Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts

Peter H Tomlins, Graham N Smith, Peter D Woolliams, Janarthanan Rasakanthan, and Kate Sugden  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 5, pp. 1319-1327 (2011)
http://dx.doi.org/10.1364/BOE.2.001319


View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.

© 2011 OSA

OCIS Codes
(000.2700) General : General science
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: February 28, 2011
Revised Manuscript: April 15, 2011
Manuscript Accepted: April 21, 2011
Published: April 25, 2011

Citation
Peter H Tomlins, Graham N Smith, Peter D Woolliams, Janarthanan Rasakanthan, and Kate Sugden, "Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts," Biomed. Opt. Express 2, 1319-1327 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-5-1319


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005). [CrossRef]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995). [PubMed]
  3. “St. Jude Medical to Acquire LightLab Imaging for $90M in cash,” OCT News, May 20, 2010, http://www.octnews.org/articles/2047898/st-jude-medical-to-acquire-lightlab-imaging-for-90/ .
  4. M. T. Tsai, H. C. Lee, C. W. Lu, Y. M. Wang, C. K. Lee, C. C. Yang, and C. P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt. 13(4), 044012 (2008). [CrossRef] [PubMed]
  5. Council of the European Communities, “Council Directive 93/42/EEC of 14 June 1993 concerning medical devices,” http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31993L0042:en:HTML .
  6. M. Cheng, Medical Device Regulations: Global Overview and Guiding Principles (World Health Organization, 2003).
  7. A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006). [CrossRef] [PubMed]
  8. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef] [PubMed]
  9. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997). [CrossRef]
  10. S. Murali, P. Meemon, K. S. Lee, W. P. Kuhn, K. P. Thompson, and J. P. Rolland, “Assessment of a liquid lens enabled in vivo opitcal coherence microscope,” Appl. Opt. 49(16), D145–D156 (2010). [CrossRef]
  11. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003). [CrossRef]
  12. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010). [CrossRef] [PubMed]
  13. P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” NPL Report OP 2 (National Physical Laboratory, 2009), pp. 1754–2944.
  14. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005). [CrossRef]
  15. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010). [CrossRef] [PubMed]
  16. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  17. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004). [CrossRef]
  18. M. Dubov, I. Bennion, D. N. Nikogosyan, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond UV pulses,” J. Opt. A Pure Appl. Opt. 10(2), 025305 (2008). [CrossRef]
  19. D. L. Wang, C. D. Li, L. Luo, H. Yang, and Q. H. Gong, “Sub-diffraction-limit voids in bulk quartz induced by femtosecond laser pulses,” Chin. Phys. Lett. 18(1), 65–67 (2001). [CrossRef]
  20. D. Merino, “Adaptive optics for optical coherence tomography,” Ph.D. thesis (National University of Ireland, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited