OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1328–1339

Segmentation of Doppler optical coherence tomography signatures using a support-vector machine

Amardeep S. G. Singh, Tilman Schmoll, and Rainer A. Leitgeb  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 5, pp. 1328-1339 (2011)
http://dx.doi.org/10.1364/BOE.2.001328


View Full Text Article

Enhanced HTML    Acrobat PDF (6342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When processing Doppler optical coherence tomography images, there is a need to segment the Doppler signatures of the vessels. This can be used for visualization, for finding the center point of the flow areas or to facilitate the quantitative analysis of the vessel flow. We propose the use of a support-vector machine classifier in order to segment the flow. It uses the phase values of the Doppler image as well as texture information. We show that superior results compared to conventional simple threshold-based methods can be achieved in conditions of significant phase noise, which inhibit the use of a simple threshold of the phase values.

© 2011 OSA

OCIS Codes
(000.0000) General : General
(100.5010) Image processing : Pattern recognition
(110.4500) Imaging systems : Optical coherence tomography
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: March 14, 2011
Revised Manuscript: April 22, 2011
Manuscript Accepted: April 22, 2011
Published: April 26, 2011

Virtual Issues
In vivo Microcirculation Imaging (2011) Biomedical Optics Express

Citation
Amardeep S. G. Singh, Tilman Schmoll, and Rainer A. Leitgeb, "Segmentation of Doppler optical coherence tomography signatures using a support-vector machine," Biomed. Opt. Express 2, 1328-1339 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-5-1328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography - Technology and Applications (Springer, 2008).
  2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [CrossRef] [PubMed]
  3. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  4. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004). [CrossRef] [PubMed]
  5. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005). [CrossRef] [PubMed]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  7. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  8. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  9. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  10. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  11. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009). [CrossRef] [PubMed]
  12. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  13. W. Drexler, R. A. Leitgeb, and C. K. Hitzenberger, “New developments in optical coherence tomography technology,” in Medical Retina, F.G. Holz, and R. Spaide, eds. (Springer, 2009), pp. 201–216.
  14. C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994). [PubMed]
  15. L. Schmetterer and M. Wolzt, “Ocular blood flow and associated functional deviations in diabetic retinopathy,” Diabetologia 42(4), 387–405 (1999). [CrossRef] [PubMed]
  16. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002). [CrossRef] [PubMed]
  17. Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 (2002). [CrossRef] [PubMed]
  18. R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Flow velocity measurements by frequency domain short coherence interferometry,” Proc. SPIE 4619, 16–21 (2002). [CrossRef]
  19. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007). [CrossRef] [PubMed]
  20. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008). [CrossRef] [PubMed]
  21. C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics 2(6-7), 416–425 (2009). [CrossRef] [PubMed]
  22. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  23. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  24. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  25. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008). [CrossRef] [PubMed]
  26. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009). [CrossRef] [PubMed]
  27. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  28. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007). [CrossRef] [PubMed]
  29. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  30. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  31. B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008). [CrossRef] [PubMed]
  32. H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007). [CrossRef] [PubMed]
  33. A. S. G. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express 1(4), 1047–1058 (2010). [CrossRef] [PubMed]
  34. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  35. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007). [CrossRef] [PubMed]
  36. D. Sen and S. K. Pal, “Histogram thresholding using fuzzy and rough measures of association error,” IEEE Trans. Image Process. 18(4), 879–888 (2009). [CrossRef] [PubMed]
  37. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).
  38. J. C. Platt, “Sequential minimal optimization: A fast algorithm for training support vector machines,” in Advances in Kernel Methods Support Vector Learning, B. Schölkopf, C. J. C. Burges and A. J. Smola, eds. (MIT Press, 1998), pp. 185–208.
  39. C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector classification,” Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, (2003).
  40. H. Xiao, G. Feng, Z. Song, and J. Chen, “Hybrid Optimization method for parameter selection of support vector machine,” in 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010) (IEEE, 2010), pp. 613–616.
  41. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008). [CrossRef] [PubMed]
  42. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1–38 (1977).
  43. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  44. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  45. J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007). [CrossRef] [PubMed]
  46. J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” in Advances in Large Margin Classifiers, P. J. Bartlett, B. Schölkopf, D. Schuurmans and A. J. Smola, eds. (MIT Press, 2000), pp. 61–74.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (4042 KB)      QuickTime
» Media 2: MOV (3971 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited