OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1423–1431

Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy

Diego Rativa and Brian Vohnsen  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 6, pp. 1423-1431 (2011)
http://dx.doi.org/10.1364/BOE.2.001423


View Full Text Article

Enhanced HTML    Acrobat PDF (1761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scanning laser ophthalmoscopy has been used to measure individual cone-photoreceptor directionalities in the living human eye. The directionality is determined at different retinal eccentricities where it is expected that cones have diameters ranging between 5–10μm, comparable to the spot size of the incident beam. Individual cone directionality values are compared with the predicted directionalities obtained by using the waveguide model of light coupling to and from photoreceptors for the case of a focused incident beam.

© 2011 OSA

OCIS Codes
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation
(330.7331) Vision, color, and visual optics : Visual optics, receptor optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: March 1, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: April 27, 2011
Published: May 4, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Citation
Diego Rativa and Brian Vohnsen, "Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy," Biomed. Opt. Express 2, 1423-1431 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112, 428–450 (1933). [CrossRef]
  2. G. Toraldo di Francia and L. Ronchi, “Directional scattering of light by the human retina,” J. Opt. Soc. Am. 42, 782–783 (1952).
  3. J. M. Enoch, “Optical properties of the retinal receptors,” J. Opt. Soc. Am. 53, 71–85 (1963). [CrossRef]
  4. A. W. Snyder and C. Pask, “The Stiles-Crawford effect explanation and consequences,” Vision Res. 13, 1115–1137 (1973). [CrossRef] [PubMed]
  5. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404–412 (2002). [CrossRef]
  6. B. Vohnsen and D. Rativa, “Absence of an integrated Stiles-Crawford function for coherent light,” J. Vision 11, 1–10 (2011). [CrossRef]
  7. B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318–2328 (2005). [CrossRef]
  8. D. Rativa and B. Vohnsen, “Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber,” Biomed. Opt. Express 2, 543–551 (2011). [CrossRef] [PubMed]
  9. J. M. Enoch and G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. Visual Sci. 12, 497–503 (1973).
  10. J. M. Gorrand and F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Visual Sci. 31 (suppl.), 425 (1990).
  11. J. M. Gorrand and F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 3, 990–1010 (1995).
  12. P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243–248 (1997). [CrossRef] [PubMed]
  13. S. A. Burns, S. Wu, F. C. Delori, and A. E. Elsner, “Direct measurement of human cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1996). [CrossRef]
  14. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16, 6486–6501 (2008). [CrossRef] [PubMed]
  15. W. Gao, R. S. Jonnal, B. Cense, O.P. Kocaoglu, Q. Wang, and D. T. Miller, “Measuring directionality of the retinal reflection with a Shack-Hartmann wavefront sensor,” Opt. Express 17, 23085–23097 (2009). [CrossRef]
  16. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990). [CrossRef] [PubMed]
  17. B. Vohnsen and D. Rativa, “Ultrasmall spot size scanning laser ophthalmoscopy,” Biomed. Opt. Express . Submitted.
  18. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2000). [CrossRef]
  19. A. Ghatak and K. Thyagarajan, “Introduction to fiber optics,” (Cambridge, U.K., 1998), pp. 149–156.
  20. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 56, 703–718 (1977).
  21. J. M. Gorrand, M. Doly, and F. Bacin, “Macular pigment density assessed by directional fundus reflectance,” J. Opt. Soc. Am. A 26, 1847–1854 (2009). [CrossRef]
  22. S. A. Burns, S. Wu, J. Chang, and A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997). [CrossRef]
  23. G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. (London) 192, 309–315 (1967).
  24. J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res. 15, 1005–1009 (1975). [CrossRef] [PubMed]
  25. B. Lochocki, D. Rativa, and B. Vohnsen, “Spatial and spectral characterisation of the first and second Stiles-Crawford effects using tuneable liquid-crystal filters,” J. Mod. Opt. (in press).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2817 KB)     
» Media 2: MOV (2686 KB)     
» Media 3: MOV (5245 KB)     
» Media 4: MOV (2579 KB)     
» Media 5: MOV (2007 KB)     
» Media 6: MOV (1683 KB)     
» Media 7: MOV (1854 KB)     
» Media 8: MOV (3984 KB)     
» Media 9: MOV (3396 KB)     
» Media 10: MOV (2965 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited