OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1597–1609

Ultrasmall spot size scanning laser ophthalmoscopy

Brian Vohnsen and Diego Rativa  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1597-1609 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1673 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultrasmall spot size scanning laser ophthalmoscope has been developed that employs an annular aberration-corrected incident beam to increase the effective numerical aperture of the eye thereby reducing the width of the probing light spot. Parafovea and foveal cone photoreceptor visibility determined from small area retinal image scans are discussed from the perspective of mode matching between the focused incident beam and the waveguide modes of individual cones. The cone visibility near the fovea centralis can be increased with the annular illumination scheme whereas the visibility of larger parafovea cones drops significantly as a consequence of poorer mode match. With further improvements of the implemented wavefront correction technology it holds promise for individual cone-photoreceptor imaging at the fovea centralis and for optical targeting of the retina with increased resolution.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(170.5755) Medical optics and biotechnology : Retina scanning
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Ophthalmology Applications

Original Manuscript: March 3, 2011
Revised Manuscript: April 3, 2011
Manuscript Accepted: May 17, 2011
Published: May 18, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Brian Vohnsen and Diego Rativa, "Ultrasmall spot size scanning laser ophthalmoscopy," Biomed. Opt. Express 2, 1597-1609 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980). [CrossRef] [PubMed]
  2. B. Vohnsen, I. Iglesias, and P. Artal, “Directional imaging of the retinal cone mosaic,” Opt. Lett. 29(9), 968–970 (2004). [CrossRef] [PubMed]
  3. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  4. Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006). [CrossRef] [PubMed]
  5. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010). [CrossRef] [PubMed]
  6. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010). [CrossRef] [PubMed]
  7. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011). [CrossRef] [PubMed]
  8. J. M. Enoch, “Optical properties of the retinal receptors,” J. Opt. Soc. Am. 53(1), 71–85 (1963). [CrossRef]
  9. B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22(11), 2318–2328 (2005). [CrossRef] [PubMed]
  10. P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37(2), 243–248 (1997). [CrossRef] [PubMed]
  11. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002). [CrossRef] [PubMed]
  12. B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24(3), 597–607 (2007). [CrossRef] [PubMed]
  13. B. Vohnsen and D. Rativa, “Absence of an integrated Stiles-Crawford function for coherent light,” J. Vis. 11(1), 19 (2011). [CrossRef] [PubMed]
  14. B. Vohnsen, I. Iglesias, and P. Artal, “Directional light scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 22(12), 2606–2612 (2005). [CrossRef] [PubMed]
  15. Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002). [CrossRef] [PubMed]
  16. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16(9), 6486–6501 (2008). [CrossRef] [PubMed]
  17. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  18. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010). [CrossRef] [PubMed]
  19. M. Pircher, J. S. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. K. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT,” Biomed. Opt. Express 2(1), 100–112 (2011). [CrossRef] [PubMed]
  20. G. Toraldo di Francia, “Retina cones as dielectric antennas,” J. Opt. Soc. Am. 39(4), 324 (1949). [CrossRef]
  21. T. Y. P. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25(12), 3021–3029 (2008). [CrossRef] [PubMed]
  22. N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express 18(24), 24902–24916 (2010). [CrossRef] [PubMed]
  23. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008). [CrossRef] [PubMed]
  24. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  25. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005). [CrossRef] [PubMed]
  26. M. Born and E. Wolf, “Principles of Optics,” 6th Edition (Pergamon Press, Oxford) p. 416 (1991).
  27. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta (Lond.) 24, 1051–1073 (1977).
  28. G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. (Oxford) 117, 219–232 (1979).
  29. T. Wilson and S. J. Hewlett, “The use of annular pupil plane filters to tune the imaging properties in confocal microscopy,” J. Mod. Opt. 37(12), 2025–2046 (1990). [CrossRef]
  30. E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66(2), 145–149 (1953). [CrossRef]
  31. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50(8), 749–753 (1960). [CrossRef]
  32. S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995). [CrossRef]
  33. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004). [CrossRef] [PubMed]
  34. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3Suppl.), 426–438 (1952). [CrossRef]
  35. D. Rativa and B. Vohnsen, “Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy,” Biomed. Opt. Express 2(6), 1423–1431 (2011). [CrossRef]
  36. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007). [CrossRef] [PubMed]
  37. N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011). [CrossRef] [PubMed]
  38. R. Seth and P. Gouras, “Assessing macular pigment from SLO images,” Doc. Ophthalmol. 108(3), 197–202 (2004). [CrossRef] [PubMed]
  39. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011). [CrossRef] [PubMed]
  40. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009). [CrossRef] [PubMed]
  41. D. Rativa and B. Vohnsen, “Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber,” Biomed. Opt. Express 2(3), 543–551 (2011). [CrossRef] [PubMed]
  42. E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1765 KB)     
» Media 2: MOV (1936 KB)     
» Media 3: MOV (3138 KB)     
» Media 4: MOV (3082 KB)     
» Media 5: MOV (2584 KB)     
» Media 6: MOV (3295 KB)     
» Media 7: MOV (1533 KB)     
» Media 8: MOV (1444 KB)     
» Media 9: MOV (1381 KB)     
» Media 10: MOV (2169 KB)     
» Media 11: MOV (1072 KB)     
» Media 12: MOV (1204 KB)     
» Media 13: MOV (2815 KB)     
» Media 14: MOV (1549 KB)     
» Media 15: MOV (3434 KB)     
» Media 16: MOV (1969 KB)     
» Media 17: MOV (3779 KB)     
» Media 18: MOV (3490 KB)     
» Media 19: MOV (3149 KB)     
» Media 20: MOV (4493 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited