OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1637–1648

Analysis of the chicken retina with an adaptive optics multiphoton microscope

Juan M. Bueno, Anastasia Giakoumaki, Emilio J. Gualda, Frank Schaeffel, and Pablo Artal  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1637-1648 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The structure and organization of the chicken retina has been investigated with an adaptive optics multiphoton imaging microscope in a backward configuration. Non-stained flat-mounted retinal tissues were imaged at different depths, from the retinal nerve fiber layer to the outer segment, by detecting the intrinsic nonlinear fluorescent signal. From the stacks of images corresponding to the different retinal layers, volume renderings of the entire retina were reconstructed. The density of photoreceptors and ganglion cells layer were directly estimated from the images as a function of the retinal eccentricity. The maximum anatomical resolving power at different retinal eccentricities was also calculated. This technique could be used for a better characterization of retinal alterations during myopia development, and may be useful for visualization of retinal pathologies and intoxication during pharmacological studies.

© 2011 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: March 7, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 13, 2011
Published: May 19, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Juan M. Bueno, Anastasia Giakoumaki, Emilio J. Gualda, Frank Schaeffel, and Pablo Artal, "Analysis of the chicken retina with an adaptive optics multiphoton microscope," Biomed. Opt. Express 2, 1637-1648 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004). [CrossRef] [PubMed]
  2. M. L. Kisilak, J. J. Hunter, L. Huang, M. C. W. Campbell, and E. L. Irving, “In chicks wearing high powered negative lenses, spherical refraction is compensated and oblique astigmatism is induced,” J. Mod. Opt. 55(4), 611–623 (2008). [CrossRef]
  3. J. J. Hunter, M. C. W. Campbell, M. L. Kisilak, and E. L. Irving, “Blur on the retina due to higher-order aberrations: comparison of eye growth models to experimental data,” J. Vis. 9(6), 12, 1–20 (2009). [CrossRef] [PubMed]
  4. F. Schaeffel, H. C. Howland, and L. Farkas, “Natural accommodation in the growing chicken,” Vision Res. 26(12), 1977–1993 (1986). [CrossRef] [PubMed]
  5. F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28(5), 639–657 (1988). [CrossRef] [PubMed]
  6. J. Wallman and J. I. Adams, “Developmental aspects of experimental myopia in chicks: susceptibility, recovery and relation to emmetropization,” Vision Res. 27(7), 1139–1163 (1987). [CrossRef] [PubMed]
  7. C. F. Wildsoet and J. D. Pettigrew, “Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens: evidence for local-control of eye growth,” Clin. Vis. Sci. 3, 99–107 (1988).
  8. J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci. 66(12), 854–858 (1989). [CrossRef] [PubMed]
  9. G. Davis Buckner, R. H. Wilkins, and J. H. Kastle, “The normal growth of White Leghorn chickens,” Am. J. Physiol. 47, 393–398 (1918).
  10. S. Mar, M. C. Martinez-Garcia, J. T. Blanco-Mezquita, R. M. Torres, and J. Merayo-Lloves, “Measurement of correlation between transmission and scattering during wound healing in hen corneas,” J. Mod. Opt. 56(8), 1014–1021 (2009). [CrossRef]
  11. M. C. Martínez-García, J. Merayo-Llovés, T. Blanco-Mezquita, and S. Mar-Sardaña, “Wound healing following refractive surgery in hens,” Exp. Eye Res. 83(4), 728–735 (2006). [CrossRef] [PubMed]
  12. R. M. Torres, J. Merayo-Lloves, J. T. Blanco-Mezquita, C. P. Günther, G. Rodríguez, R. Gutiérez, and C. Martínez-García, “Experimental model of laser in situ keratomileusis in hens,” J. Refract. Surg. 21(4), 392–398 (2005). [PubMed]
  13. W. C. Fowler, D. H. Chang, B. C. Roberts, E. L. Zarovnaya, and A. D. Proia, “A new paradigm for corneal wound healing research: the white leghorn chicken (Gallus gallus domesticus),” Curr. Eye Res. 28(4), 241–250 (2004). [CrossRef] [PubMed]
  14. R. L. Trelstad and A. J. Coulombre, “Morphogenesis of the collagenous stroma in the chick cornea,” J. Cell Biol. 50(3), 840–858 (1971). [CrossRef] [PubMed]
  15. C. Boote, S. Hayes, S. Jones, A. J. Quantock, P. M. Hocking, C. F. Inglehearn, M. Ali, and K. M. Meek, “Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype--an X-ray diffraction study,” J. Struct. Biol. 161(1), 1–8 (2008). [CrossRef] [PubMed]
  16. C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res. 48(14), 1554–1561 (2008). [CrossRef] [PubMed]
  17. S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res. 65(5), 681–689 (1997). [CrossRef] [PubMed]
  18. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  19. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22(17), 1323–1325 (1997). [CrossRef] [PubMed]
  20. E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010). [CrossRef] [PubMed]
  21. J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011). [CrossRef] [PubMed]
  22. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010). [CrossRef] [PubMed]
  23. F. Schaeffel and H. C. Howland, “Visual optics in normal and ametropic chickens,” Clin. Vis. Sci. 3, 83–89 (1988).
  24. L. Reymond, “Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation,” Vision Res. 25(10), 1477–1491 (1985). [CrossRef] [PubMed]
  25. J. I. Yellott., “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982). [CrossRef] [PubMed]
  26. N. J. Coletta and D. R. Williams, “Psychophysical estimate of extrafoveal cone spacing,” J. Opt. Soc. Am. A 4(8), 1503–1513 (1987). [CrossRef] [PubMed]
  27. P. Artal and R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14(20), 1098–1100 (1989). [CrossRef] [PubMed]
  28. M. Bartmann and F. Schaeffel, “A simple mechanism for emmetropization without cues from accommodation or colour,” Vision Res. 34(7), 873–876 (1994). [CrossRef] [PubMed]
  29. F. Schaeffel, B. Rohrer, E. Zrenner, and T. Lemmer, “Diurnal control of rod function in the chicken,” Vis. Neurosci. 6(06), 641–653 (1991). [CrossRef] [PubMed]
  30. N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol. 209(23), 4776–4787 (2006). [CrossRef] [PubMed]
  31. M. J. Tovée, An Introduction to the Visual System (Cambridge University Press, 1996).
  32. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007). [CrossRef] [PubMed]
  33. C. H. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005). [CrossRef] [PubMed]
  34. S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002). [CrossRef] [PubMed]
  35. Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol. 164(3), 373–383 (2004). [CrossRef] [PubMed]
  36. M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt. 11(1), 010501 (2006). [CrossRef] [PubMed]
  37. M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt. 12(2), 024012 (2007). [CrossRef] [PubMed]
  38. J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt. 14(3), 034048 (2009). [CrossRef] [PubMed]
  39. B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med. 40(4), 247–256 (2008). [CrossRef] [PubMed]
  40. N. S. Hart, “The visual ecology of avian photoreceptors,” Prog. Retin. Eye Res. 20(5), 675–703 (2001). [CrossRef] [PubMed]
  41. M. S. Wai, D. E. Lorke, L. S. Kung, and D. T. Yew, “Morphogenesis of the different types of photoreceptors of the chicken (Gallus domesticus) retina and the effect of amblyopia in neonatal chicken,” Microsc. Res. Tech. 69(2), 99–107 (2006). [CrossRef] [PubMed]
  42. Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE 5(2), e8992 (2010). [CrossRef] [PubMed]
  43. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990). [CrossRef] [PubMed]
  44. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci. 9(02), 169–180 (1992). [CrossRef] [PubMed]
  45. A. K. Goodchild, K. K. Ghosh, and P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366(1), 55–75 (1996). [CrossRef] [PubMed]
  46. L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, and B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11(4), 1461–1469 (1999). [CrossRef] [PubMed]
  47. M. J. Chandler, P. J. Smith, D. A. Samuelson, and E. O. MacKay, “Photoreceptor density of the domestic pig retina,” Vet. Ophthalmol. 2(3), 179–184 (1999). [CrossRef] [PubMed]
  48. M. L. Rahman, M. Aoyama, and S. Sugita, “Number and density of retinal photoreceptor cells with emphasis on oil droplet distribution in the Mallard Duck (Anas platyrhynchos var. domesticus),” J. Anim. Sci. 78(6), 639–649 (2007). [CrossRef]
  49. M. L. Rahman, M. Aoyama, and S. Sugita, “Topography of retinal photoreceptor cells in the Jungle Crow (Corvus macrorhynchos) with emphasis on the distribution of oil droplets,” Ornitholog. Sci. 6(1), 29–38 (2007). [CrossRef]
  50. J. K. Bowmaker, “The visual pigments, oil droplets and spectral sensitivity of the pigeon,” Vision Res. 17(10), 1129–1138 (1977). [CrossRef] [PubMed]
  51. V. Porciatti, W. Hodos, G. Signorini, and F. Bramanti, “Electroretinographic changes in aged pigeons,” Vision Res. 31(4), 661–668 (1991). [CrossRef] [PubMed]
  52. M. M. Ghim and W. Hodos, “Spatial contrast sensitivity of birds,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(5), 523–534 (2006). [CrossRef] [PubMed]
  53. E. Diedrich and F. Schaeffel, “Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro,” Vis. Neurosci. 26(5-6), 467–476 (2009). [CrossRef] [PubMed]
  54. R. Over and D. Moore, “Spatial acuity of the chicken,” Brain Res. 211(2), 424–426 (1981). [CrossRef] [PubMed]
  55. K. L. Schmid and C. F. Wildsoet, “Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm,” Vision Res. 38(17), 2629–2634 (1998). [CrossRef] [PubMed]
  56. J. Naito and Y. Chen, “Morphological features of chick retinal ganglion cells,” Anat. Sci. Int. 79(4), 213–225 (2004). [CrossRef] [PubMed]
  57. D. Ehrlich, “Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer,” J. Comp. Neurol. 195(4), 643–657 (1981). [CrossRef] [PubMed]
  58. C. Straznicky and M. Chehade, “The formation of the area centralis of the retinal ganglion cell layer in the chick,” Development 100(3), 411–420 (1987). [PubMed]
  59. Y. Chen and J. Naito, “A quantitative analysis of cells in the ganglion cell layer of the chick retina,” Brain Behav. Evol. 53(2), 75–86 (1999). [CrossRef] [PubMed]
  60. D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci. 13(04), 721–733 (1996). [CrossRef] [PubMed]
  61. A. J. Fischer and T. A. Reh, “Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens,” Dev. Biol. 220(2), 197–210 (2000). [CrossRef] [PubMed]
  62. R. L. Binggeli and W. J. Paule, “The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer,” J. Comp. Neurol. 137(1), 1–18 (1969). [CrossRef] [PubMed]
  63. V. Budnik, J. Mpodozis, F. J. Varela, and H. R. Maturana, “Regional specialization of the quail retina: ganglion cell density and oil droplet distribution,” Neurosci. Lett. 51(1), 145–150 (1984). [CrossRef] [PubMed]
  64. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited