OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1918–1930

Potential role of a hybrid intraoperative probe based on OCT and positron detection for ovarian cancer detection and characterization

Yi Yang, Nrusingh C. Biswal, Tianheng Wang, Patrick D. Kumavor, Mozafareddin Karimeddini, John Vento, Melinda Sanders, Molly Brewer, and Quing Zhu  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 7, pp. 1918-1930 (2011)
http://dx.doi.org/10.1364/BOE.2.001918


View Full Text Article

Enhanced HTML    Acrobat PDF (1407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ovarian cancer has the lowest survival rate of the gynecologic cancers because it is predominantly diagnosed in the late stages due to the lack of reliable symptoms and efficacious screening techniques. A novel hybrid intraoperative probe has been developed and evaluated for its potential role in detecting and characterizing ovarian tissue. The hybrid intraoperative dual-modality device consists of multiple scintillating fibers and an optical coherence tomography imaging probe for simultaneously mapping the local activities of 18F-FDG uptake and imaging of local morphological changes of the ovary. Ten patients were recruited to the study and a total of 18 normal, abnormal and malignant ovaries were evaluated ex vivo using this device. Positron count rates of 7.5/8.8-fold higher were found between malignant and abnormal/normal ovaries. OCT imaging of malignant and abnormal ovaries revealed many detailed morphologic features that could be potentially valuable for evaluating local regions with high metabolic activities and detecting early malignant changes in the ovary. These initial results have demonstrated that our novel hybrid imager has great potential for ovarian cancer detection and characterization during minimally invasive endoscopic procedures.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4440) Medical optics and biotechnology : ObGyn
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Multimodal Imaging

History
Original Manuscript: May 9, 2011
Revised Manuscript: June 4, 2011
Manuscript Accepted: June 9, 2011
Published: June 13, 2011

Citation
Yi Yang, Nrusingh C. Biswal, Tianheng Wang, Patrick D. Kumavor, Mozafareddin Karimeddini, John Vento, Melinda Sanders, Molly Brewer, and Quing Zhu, "Potential role of a hybrid intraoperative probe based on OCT and positron detection for ovarian cancer detection and characterization," Biomed. Opt. Express 2, 1918-1930 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-7-1918


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. R. Rebbeck, H. T. Lynch, S. L. Neuhausen, S. A. Narod, L. Van’t Veer, J. E. Garber, G. Evans, C. Isaacs, M. B. Daly, E. Matloff, O. I. Olopade, B. L. Weber, and Prevention and Observation of Surgical End Points Study Group, “Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations,” N. Engl. J. Med. 346(21), 1616–1622 (2002). [CrossRef] [PubMed]
  2. N. D. Kauff, J. M. Satagopan, M. E. Robson, L. Scheuer, M. Hensley, C. A. Hudis, N. A. Ellis, J. Boyd, P. I. Borgen, R. R. Barakat, L. Norton, M. Castiel, K. Nafa, and K. Offit, “Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation,” N. Engl. J. Med. 346(21), 1609–1615 (2002). [CrossRef] [PubMed]
  3. W. A. Rocca, B. R. Grossardt, M. de Andrade, G. D. Malkasian, and L. J. Melton, “Survival patterns after oophorectomy in premenopausal women: a population-based cohort study,” Lancet Oncol. 7(10), 821–828 (2006). [CrossRef] [PubMed]
  4. J. S. Berek, E. Chalas, M. Edelson, D. H. Moore, W. M. Burke, W. A. Cliby, A. Berchuck, and Society of Gynecologic Oncologists Clinical Practice Committee, “Prophylactic and risk-reducing bilateral salpingo-oophorectomy: recommendations based on risk of ovarian cancer,” Obstet. Gynecol. 116(3), 733–743 (2010). [CrossRef] [PubMed]
  5. N. Pandit-Taskar, “Oncologic imaging in gynecologic malignancies,” J. Nucl. Med. 46(11), 1842–1850 (2005). [PubMed]
  6. M. Piert, M. Burian, G. Meisetschläger, H. J. Stein, S. Ziegler, J. Nährig, M. Picchio, A. Buck, J. R. Siewert, and M. Schwaiger, “Positron detection for the intraoperative localisation of cancer deposits,” Eur. J. Nucl. Med. Mol. Imaging 34(10), 1534–1544 (2007). [CrossRef] [PubMed]
  7. F. Bogalhas, Y. Charon, M.-A. Duval, F. Lefebvre, S. Palfi, L. Pinot, R. Siebert, and L. Ménard, “Development of a positron probe for localization and excision of brain tumours during surgery,” Phys. Med. Biol. 54(14), 4439–4453 (2009). [CrossRef] [PubMed]
  8. H. W. Strauss, C. Mari, B. E. Patt, and V. Ghazarossian, “Intravascular radiation detectors for the detection of vulnerable atheroma,” J. Am. Coll. Cardiol. 47(8Suppl), C97–C100 (2006). [CrossRef] [PubMed]
  9. B. E. Patt, J. S. Iwanczyk, L. R. MacDonald, Y. Yamaguchi, C. R. Tull, M. Janecek, E. J. Hoffman, W. Strauss, R. Tsugita, and V. Ghazarossian, “Intravascular probe for detection of vulnerable plaque,” Proc. SPIE 4508, 88–98 (2001). [CrossRef]
  10. V. E. Strong, J. Humm, P. Russo, A. Jungbluth, W. D. Wong, F. Daghighian, L. Old, Y. Fong, and S. M. Larson, “A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes,” Surg. Endosc. 22(2), 386–391 (2008). [CrossRef] [PubMed]
  11. S. Yamamoto, K. Matsumoto, S. Sakamoto, K. Tarutani, K. Minato, and M. Senda, “An intra-operative positron probe with background rejection capability for FDG-guided surgery,” Ann. Nucl. Med. 19(1), 23–28 (2005). [CrossRef] [PubMed]
  12. R. R. Raylman, “Performance of a dual, solid-state intraoperative probe system with 18F, 99mTc, and (111)In,” J. Nucl. Med. 42(2), 352–360 (2001). [PubMed]
  13. N. Auricchio, G. D. Domenico, L. Milano, R. Malaguti, G. Ambrosi, M. Ionica, E. Fiandrini, and G. Zavattini, “Characterization of silicon detectors for the SiliPET Project: a small animal PET scanner based on stacks of silicon detectors,” IEEE Trans. Nucl. Sci. 57(5), 2424–2436 (2010). [CrossRef]
  14. M. P. Tornai, B. E. Patt, J. S. Iwanczyk, C. R. Tull, L. R. MacDonald, and E. J. Hoffman, “A novel silicon array designed for intraoperative charged particle imaging,” Med. Phys. 29(11), 2529–2540 (2002). [CrossRef] [PubMed]
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  16. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009). [CrossRef] [PubMed]
  17. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  18. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010). [CrossRef] [PubMed]
  19. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107(1), 113–119 (2003). [CrossRef] [PubMed]
  20. P. Barlis, P. W. Serruys, N. Gonzalo, W. J. van der Giessen, P. J. de Jaegere, and E. Regar, “Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes,” Am. J. Cardiol. 102(4), 391–395 (2008). [CrossRef] [PubMed]
  21. P. A. Testoni and B. Mangiavillano, “Optical coherence tomography in detection of dysplasia and cancer of the gastrointestinal tract and bilio-pancreatic ductal system,” World J. Gastroenterol. 14(42), 6444–6452 (2008). [CrossRef] [PubMed]
  22. M. J. Cobb, J. H. Hwang, M. P. Upton, Y. C. Chen, B. K. Oelschlager, D. E. Wood, M. B. Kimmey, and X. Li, “Imaging of subsquamous Barrett’s epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study,” Gastrointest. Endosc. 71(2), 223–230 (2010). [CrossRef] [PubMed]
  23. J. B. McNally, N. D. Kirkpatrick, L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, E. W. Gerner, U. Utzinger, and J. K. Barton, “Task-based imaging of colon cancer in the Apc(Min/+) mouse model,” Appl. Opt. 45(13), 3049–3062 (2006). [CrossRef] [PubMed]
  24. E. M. Kanter, R. M. Walker, S. L. Marion, M. Brewer, P. B. Hoyer, and J. K. Barton, “Dual modality imaging of a novel rat model of ovarian carcinogenesis,” J. Biomed. Opt. 11(4), 041123 (2006). [CrossRef] [PubMed]
  25. L. P. Hariri, G. T. Bonnema, K. Schmidt, A. M. Winkler, V. Korde, K. D. Hatch, J. R. Davis, M. A. Brewer, and J. K. Barton, “Laparoscopic optical coherence tomography imaging of human ovarian cancer,” Gynecol. Oncol. 114(2), 188–194 (2009). [CrossRef] [PubMed]
  26. C. L. Evans, I. Rizvi, T. Hasan, and J. F. de Boer, “In vitro ovarian tumor growth and treatment response dynamics visualized with time-lapse OCT imaging,” Opt. Express 17(11), 8892–8906 (2009). [CrossRef] [PubMed]
  27. M. A. Brewer, U. Utzinger, J. K. Barton, J. B. Hoying, N. D. Kirkpatrick, W. R. Brands, J. R. Davis, K. Hunt, S. J. Stevens, and A. F. Gmitro, “Imaging of the ovary,” Technol. Cancer Res. Treat. 3(6), 617–627 (2004). [PubMed]
  28. J. Gamelin, Y. Yang, N. Biswal, Y. Chen, S. Yan, X. Zhang, M. Karemeddini, M. Brewer, and Q. Zhu, “A prototype hybrid intraoperative probe for ovarian cancer detection,” Opt. Express 17(9), 7245–7258 (2009). [CrossRef] [PubMed]
  29. D. Piao, M. M. Sadeghi, J. Zhang, Y. Chen, A. J. Sinusas, and Q. Zhu, “Hybrid positron detection and optical coherence tomography system: design, calibration, and experimental validation with rabbit atherosclerotic models,” J. Biomed. Opt. 10(4), 044010 (2005). [CrossRef] [PubMed]
  30. S. Cherry, J. Sorenson, and M. Phelps, Physics in Nuclear Medicine, 3rd. ed. (Saunders, 2003).
  31. B. Meller, K. Sommer, J. Gerl, K. von Hof, A. Surowiec, E. Richter, B. Wollenberg, and M. Baehre, “High energy probe for detecting lymph node metastases with 18F-FDG in patients with head and neck cancer,” Nucl. Med. (Stuttg.) 45(4), 153–159 (2006). [PubMed]
  32. B. L. Franc, C. Mari, D. Johnson, and S. P. Leong, “The role of a positron- and high-energy gamma photon probe in intraoperative localization of recurrent melanoma,” Clin. Nucl. Med. 30(12), 787–791 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited