OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2202–2215

Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2202-2215 (2011)
http://dx.doi.org/10.1364/BOE.2.002202


View Full Text Article

Enhanced HTML    Acrobat PDF (1453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A noninvasive, multimodal photoacoustic and optical coherence tomography (PAT/OCT) scanner for three-dimensional in vivo (3D) skin imaging is described. The system employs an integrated, all optical detection scheme for both modalities in backward mode utilizing a shared 2D optical scanner with a field-of-view of ~13 × 13 mm2. The photoacoustic waves were detected using a Fabry Perot polymer film ultrasound sensor placed on the surface of the skin. The sensor is transparent in the spectral range 590-1200 nm. This permits the photoacoustic excitation beam (670-680 nm) and the OCT probe beam (1050 nm) to be transmitted through the sensor head and into the underlying tissue thus providing a backward mode imaging configuration. The respective OCT and PAT axial resolutions were 8 and 20 µm and the lateral resolutions were 18 and 50-100 µm. The system provides greater penetration depth than previous combined PA/OCT devices due to the longer wavelength of the OCT beam (1050 nm rather than 829-870 nm) and by operating in the tomographic rather than the optical resolution mode of photoacoustic imaging. Three-dimensional in vivo images of the vasculature and the surrounding tissue micro-morphology in murine and human skin were acquired. These studies demonstrated the complementary contrast and tissue information provided by each modality for high-resolution 3D imaging of vascular structures to depths of up to 5 mm. Potential applications include characterizing skin conditions such as tumors, vascular lesions, soft tissue damage such as burns and wounds, inflammatory conditions such as dermatitis and other superficial tissue abnormalities.

© 2011 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(130.0130) Integrated optics : Integrated optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(290.0290) Scattering : Scattering
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Multimodal Imaging

History
Original Manuscript: April 26, 2011
Revised Manuscript: June 28, 2011
Manuscript Accepted: July 1, 2011
Published: July 8, 2011

Citation
Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler, "Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging," Biomed. Opt. Express 2, 2202-2215 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. C. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
  2. J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007). [CrossRef] [PubMed]
  3. J. G. Laufer, B. Cox, E. Z. Zhang, and P. C. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49(8), 1219–1233 (2010). [CrossRef] [PubMed]
  4. P. C. Beard, Flow velocity measurements, UK Patent Application, PCT/GB02/04977 (2001)
  5. J. Brunker and P. C. Beard, “Pulsed photoacoustic Doppler flow measurements in blood-mimicking phantoms,” Proc. SPIE 7899, 78991K, 78991K-10 (2011). [CrossRef]
  6. H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99(18), 184501 (2007). [CrossRef] [PubMed]
  7. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010). [CrossRef] [PubMed]
  8. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003). [CrossRef] [PubMed]
  9. J. G. Laufer, E. Z. Zhang, G. Raivich, and P. C. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009). [CrossRef] [PubMed]
  10. C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010). [CrossRef] [PubMed]
  11. H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009). [CrossRef] [PubMed]
  12. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009). [CrossRef] [PubMed]
  13. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008). [CrossRef] [PubMed]
  14. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010). [CrossRef] [PubMed]
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  16. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993). [PubMed]
  17. C. K. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  18. G. Häusler, J. M. Herrmann, R. Kummer, and M. W. Lindner, “Observation of light propagation in volume scatterers with 1011-fold slow motion,” Opt. Lett. 21(14), 1087–1089 (1996). [CrossRef] [PubMed]
  19. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997). [CrossRef] [PubMed]
  20. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  21. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  22. B. Hermann, B. Hofer, C. Meier, and W. Drexler, “Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non-scattering phantoms,” Opt. Express 17(26), 24162–24174 (2009). [CrossRef] [PubMed]
  23. L. Li, K. Maslov, G. Ku, and L. V. Wang, “Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies,” Opt. Express 17(19), 16450–16455 (2009). [CrossRef] [PubMed]
  24. S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34(19), 2961–2963 (2009). [CrossRef] [PubMed]
  25. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010). [CrossRef] [PubMed]
  26. E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008). [CrossRef] [PubMed]
  27. A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010). [CrossRef] [PubMed]
  28. “Safety of laser products. Equipment classification, requirements and user’s guide,” BS EN60825–1 (The British Standard Institute, 1994)
  29. K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001). [CrossRef] [PubMed]
  30. P. A. Khavari, “Modelling cancer in human skin tissue,” Nat. Rev. Cancer 6(4), 270–280 (2006). [CrossRef] [PubMed]
  31. B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010). [CrossRef]
  32. E. Z. Zhang, J. G. Laufer, P. C. Beard, B. Považay, A. Alex, B. Hofer, and W. Drexler, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010). [CrossRef]
  33. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3546 KB)      QuickTime
» Media 2: MOV (5546 KB)      QuickTime
» Media 3: MOV (3623 KB)      QuickTime
» Media 4: MOV (360 KB)      QuickTime
» Media 5: MOV (2155 KB)      QuickTime
» Media 6: MOV (3205 KB)      QuickTime
» Media 7: MOV (3008 KB)      QuickTime
» Media 8: MOV (2082 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited