OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2383–2391

Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes

Jessica P. Mondia, Dany S. Adams, Ryan D. Orendorff, Michael Levin, and Fiorenzo G. Omenetto  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2383-2391 (2011)
http://dx.doi.org/10.1364/BOE.2.002383


View Full Text Article

Enhanced HTML    Acrobat PDF (1484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed.

© 2011 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.1020) Medical optics and biotechnology : Ablation of tissue

ToC Category:
Optical Therapies and Photomodificaton

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 24, 2011
Manuscript Accepted: July 24, 2011
Published: July 27, 2011

Citation
Jessica P. Mondia, Dany S. Adams, Ryan D. Orendorff, Michael Levin, and Fiorenzo G. Omenetto, "Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes," Biomed. Opt. Express 2, 2383-2391 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  2. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009). [CrossRef] [PubMed]
  3. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000). [CrossRef] [PubMed]
  4. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004). [CrossRef] [PubMed]
  5. V. Kohli and A. Y. Elezzabi, “Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development,” BMC Biotechnol. 8(1), 7 (2008). [CrossRef] [PubMed]
  6. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005). [CrossRef] [PubMed]
  7. J. Green, “Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment,” Dev. Dyn. 225(4), 392–408 (2002). [CrossRef] [PubMed]
  8. C. W. Beck and J. M. Slack, “An amphibian with ambition: a new role for Xenopus in the 21st century,” Genome Biol. 2(10), reviews1029.1–reviews1029.5 (2001). [CrossRef] [PubMed]
  9. J. B. Wallingford, “Tumors in tadpoles: the Xenopus embryo as a model system for the study of tumorigenesis,” Trends Genet. 15(10), 385–388 (1999). [CrossRef] [PubMed]
  10. A. S. Tseng and M. Levin, “Tail regeneration in Xenopus laevis as a model for understanding tissue repair,” J. Dent. Res. 87(9), 806–816 (2008). [CrossRef] [PubMed]
  11. J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004). [CrossRef] [PubMed]
  12. C. W. Beck, J. C. Izpisúa Belmonte, and B. Christen, “Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms,” Dev. Dyn. 238(6), 1226–1248 (2009). [CrossRef] [PubMed]
  13. S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002). [CrossRef] [PubMed]
  14. D. S. Adams, “A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration,” Tissue Eng. Part A 14(9), 1461–1468 (2008). [CrossRef] [PubMed]
  15. H. Ogino and H. Ochi, “Resources and transgenesis techniques for functional genomics in Xenopus,” Dev. Growth Differ. 51(4), 387–401 (2009). [CrossRef] [PubMed]
  16. M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009). [CrossRef] [PubMed]
  17. D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011). [CrossRef] [PubMed]
  18. T. O’Reilly-Pol and S. L. Johnson, “Melanocyte regeneration reveals mechanisms of adult stem cell regulation,” Semin. Cell Dev. Biol. 20(1), 117–124 (2009). [CrossRef] [PubMed]
  19. P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin): a Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis (North-Holland, Amsterdam, 1956).
  20. M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004). [CrossRef] [PubMed]
  21. C.-T. Yang, R. D. Sengelmann, and S. L. Johnson, “Larval melanocyte regeneration following laser ablation in zebrafish,” J. Invest. Dermatol. 123(5), 924–929 (2004). [CrossRef] [PubMed]
  22. H. L. Sive, R. M. Grainger, and R. M. Harland, Early Development of Xenopus laevis: a Laboratory Manual (Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY, 2000).
  23. J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008). [CrossRef] [PubMed]
  24. R. M. Steinman, “An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis,” Am. J. Anat. 122(1), 19–55 (1968). [CrossRef] [PubMed]
  25. Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003). [CrossRef]
  26. T. H. Morgan, Regeneration (The Macmillan Company, 1901).
  27. J. M. Slack, G. Lin, and Y. Chen, “Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research,” Cell. Mol. Life Sci. 65(1), 54–63 (2008). [CrossRef] [PubMed]
  28. Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008). [CrossRef] [PubMed]
  29. J. P. Mondia, M. Levin, F. G. Omenetto, R. D. Orendorff, and D. S. Adams, “Long-distance positional signals are required for normal morphogenesis during regeneration of the Xenopus tadpole tail, as revealed by femtosecond-laser cell ablation along the dorsal axis,” in preparation.
  30. K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp, “Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery,” Biomed. Opt. Express 1(2), 587–597 (2010). [CrossRef] [PubMed]
  31. A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (4384 KB)     
» Media 2: MOV (2450 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited