OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2577–2589

Spatial and temporal variation of rod photoreceptor reflectance in the human retina

Robert F. Cooper, Adam M. Dubis, Ashavini Pavaskar, Jungtae Rha, Alfredo Dubra, and Joseph Carroll  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2577-2589 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1917 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using adaptive optics imaging tools to image the living retina, numerous investigators have reported temporal fluctuation in the reflectivity of individual cone photoreceptors. In addition, there is cone-to-cone (spatial) variation in reflectivity. As it has only recently become possible to image the complete rod photoreceptor mosaic in the living human retina, we sought to characterize the reflectivity of individual rods and compare their behavior to that of foveal/parafoveal cones. Across two subjects, we were able to successfully track the reflectance behavior of 1,690 rods and 1,980 cones over 12 hours. Rod and cone photoreceptors showed similar regional and temporal variability in their reflectance profiles, suggesting the presence of a common governing physiological process. Within the rod and cone mosaics, there was no sign of spatial clumping of reflectance profile behavior; that is, the arrangement of cells of a given archetypal reflectance profile within the mosaic was indistinguishable from random. These data demonstrate the ability to track the behavior of rod reflectivity over time. Finally, as these and other reflectance changes may be an indicator of photoreceptor function, a future extension of this method will be to analyze this behavior in patients with rod photoreceptor dysfunction (e.g., retinitis pigmentosa, Usher’s syndrome, and congenital stationary night blindness).

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(330.7331) Vision, color, and visual optics : Visual optics, receptor optics
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: June 29, 2011
Revised Manuscript: August 5, 2011
Manuscript Accepted: August 8, 2011
Published: August 11, 2011

Robert F. Cooper, Adam M. Dubis, Ashavini Pavaskar, Jungtae Rha, Alfredo Dubra, and Joseph Carroll, "Spatial and temporal variation of rod photoreceptor reflectance in the human retina," Biomed. Opt. Express 2, 2577-2589 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996). [CrossRef] [PubMed]
  2. A. R. Wade and F. W. Fitzke, “In vivo imaging of the human cone-photoreceptor mosaic using a confocal laser scanning ophthalmoscope,” Lasers and Light in Ophthalmology 8, 129–136 (1998).
  3. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  4. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001). [CrossRef] [PubMed]
  5. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  6. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  7. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007). [CrossRef] [PubMed]
  8. T. Y. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25(12), 3021–3029 (2008). [CrossRef] [PubMed]
  9. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008). [CrossRef] [PubMed]
  10. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009). [CrossRef] [PubMed]
  11. O. P. Kocaoglu, S. C. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011). [CrossRef] [PubMed]
  12. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002). [CrossRef] [PubMed]
  13. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  14. M. Pircher, J. S. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. K. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT,” Biomed. Opt. Express 2(1), 100–112 (2011). [CrossRef] [PubMed]
  15. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006). [CrossRef] [PubMed]
  16. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010). [CrossRef] [PubMed]
  17. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007). [CrossRef]
  18. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008). [CrossRef] [PubMed]
  19. J. Rha, B. Schroeder, P. Godara, and J. Carroll, “Variable optical activation of human cone photoreceptors visualized using a short coherence light source,” Opt. Lett. 34(24), 3782–3784 (2009). [CrossRef] [PubMed]
  20. C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Comparing mfERGs with estimates of cone density from in vivo imaging of the photoreceptor mosaic using a modified Heidelberg retina tomograph,” Vision Res. 50(15), 1462–1468 (2010). [CrossRef] [PubMed]
  21. H. Gao and J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Vis. Sci. 33(1), 1–17 (1992). [PubMed]
  22. C. A. Curcio, “Photoreceptor topography in ageing and age-related maculopathy,” Eye (Lond.) 15(3), 376–383 (2001). [CrossRef] [PubMed]
  23. C. A. Curcio, C. L. Millican, K. A. Allen, and R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Vis. Sci. 34(12), 3278–3296 (1993). [PubMed]
  24. C. A. Curcio, C. Owsley, and G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 41(8), 2015–2018 (2000). [PubMed]
  25. D. A. Newsome, “Retinitis pigmentosa, Usher's syndrome, and other pigmentary retinopathies,” in Retinal dystrophies and degenerations, D. A. Newsome, ed. (Raven Press, New York, 1988), pp. 161–194.
  26. E. L. Berson, “Retinitis pigmentosa. The Friedenwald Lecture,” Invest. Ophthalmol. Vis. Sci. 34(5), 1659–1676 (1993). [PubMed]
  27. J. Carroll, S. S. Choi, and D. R. Williams, “In vivo imaging of the photoreceptor mosaic of a rod monochromat,” Vision Res. 48(26), 2564–2568 (2008). [CrossRef] [PubMed]
  28. J. Carroll, E. Banin, D. M. Hunt, R. Martin, M. Michaelides, L. Mizrahi-Meissonnier, A. T. Moore, D. Sharon, D. R. Williams, and A. Dubra, “Evaluating the photoreceptor mosaic in blue cone monochromacy (BCM),” Investigative Ophthalmology & Visual Science 51, E-Abstract 2935 (2010).
  29. N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011). [CrossRef] [PubMed]
  30. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  31. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  32. A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” in Biomedical Image Registration (Springer, Heidelberg, 2010), pp. 60–71.
  33. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007). [CrossRef] [PubMed]
  34. Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002). [CrossRef] [PubMed]
  35. P. J. Diggle, Statistical Analysis of Spatial Point Patterns, Mathematics in Biology (Academic Press, London, 1983).
  36. A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41(10-11), 1291–1306 (2001). [CrossRef] [PubMed]
  37. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25(42), 9669–9679 (2005). [CrossRef] [PubMed]
  38. W. J. Kimberling and C. Möller, “Clinical and molecular genetics of Usher syndrome,” J. Am. Acad. Audiol. 6(1), 63–72 (1995). [PubMed]
  39. E. Malm, V. Ponjavic, C. Möller, W. J. Kimberling, E. S. Stone, and S. Andréasson, “Alteration of rod and cone function in children with Usher syndrome,” Eur. J. Ophthalmol. 21(1), 30–38 (2011). [CrossRef] [PubMed]
  40. R. S. Molday, “Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture,” Invest. Ophthalmol. Vis. Sci. 39(13), 2491–2513 (1998). [PubMed]
  41. I. Perrault, J. M. Rozet, S. Gerber, I. Ghazi, C. Leowski, D. Ducroq, E. Souied, J. L. Dufier, A. Munnich, and J. Kaplan, “Leber congenital amaurosis,” Mol. Genet. Metab. 68(2), 200–208 (1999). [CrossRef] [PubMed]
  42. S. P. Daiger, S. J. Bowne, and L. S. Sullivan, “Perspective on genes and mutations causing retinitis pigmentosa,” Arch. Ophthalmol. 125(2), 151–158 (2007). [CrossRef] [PubMed]
  43. K. M. Nishiguchi, M. A. Sandberg, N. Gorji, E. L. Berson, and T. P. Dryja, “Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases,” Hum. Mutat. 25(3), 248–258 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (264 KB)     
» Media 2: AVI (383 KB)     
» Media 3: AVI (3866 KB)     
» Media 4: AVI (3677 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited