OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2649–2654

Photoacoustic image reconstruction from few-detector and limited-angle data

Lei Yao and Huabei Jiang  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2649-2654 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoacoustic tomography (PAT) is an emerging non-invasive imaging technique with great potential for a wide range of biomedical imaging applications. However, the conventional PAT reconstruction algorithms often provide distorted images with strong artifacts in cases when the signals are collected from few measurements or over an aperture that does not enclose the object. In this work, we present a total-variation-minimization (TVM) enhanced iterative reconstruction algorithm that can provide excellent photoacoustic image reconstruction from few-detector and limited-angle data. The enhancement is confirmed and evaluated using several phantom experiments.

© 2011 OSA

OCIS Codes
(100.2980) Image processing : Image enhancement
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: July 22, 2011
Revised Manuscript: August 19, 2011
Manuscript Accepted: August 19, 2011
Published: August 19, 2011

Lei Yao and Huabei Jiang, "Photoacoustic image reconstruction from few-detector and limited-angle data," Biomed. Opt. Express 2, 2649-2654 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002). [CrossRef] [PubMed]
  2. S. J. Norton and T. Vo-Dinh, “Optoacoustic diffraction tomography: analysis of algorithms,” J. Opt. Soc. Am. A20(10), 1859–1866 (2003). [CrossRef] [PubMed]
  3. A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001). [CrossRef]
  4. L. A. Kunyansky, “Explicit inversion formulae for the spherical mean radon transform,” Inverse Probl.23(1), 373–383 (2007). [CrossRef]
  5. D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,” SIAM J. Math. Anal.35(5), 1213–1240 (2004). [CrossRef]
  6. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016706 (2005). [CrossRef] [PubMed]
  7. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogenous media,” Appl. Phys. Lett.88(23), 231101 (2006). [CrossRef]
  8. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32(17), 2556–2558 (2007). [CrossRef] [PubMed]
  9. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys.22(6), 691–701 (1995). [CrossRef] [PubMed]
  10. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. B. Arridge, J. Beuthen, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds. (SPIE Press, 1993), pp. 35–64.
  11. S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in diffraction tomography,” J. Opt. Soc. Am. A25(7), 1772–1782 (2008). [CrossRef]
  12. J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010). [CrossRef] [PubMed]
  13. H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, “Photo-acoustic imaging for attenuating acoustic media,” in Mathematical Modeling in Biomedical Imaging II, H. Ammari, ed., Vol. 2035 of Lecture Notes in Mathematics (Springer, 2011), pp. 53–80.
  14. H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010). [CrossRef]
  15. H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011). [CrossRef]
  16. K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011). [CrossRef]
  17. L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A, Pure Appl. Opt.11(8), 085301 (2009). [CrossRef]
  18. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35(19), 3447–3458 (1996). [CrossRef] [PubMed]
  19. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A23(4), 878–888 (2006). [CrossRef] [PubMed]
  20. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited