OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 104–124

Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics

Ravi S. Jonnal, Omer P. Kocaoglu, Qiang Wang, Sangyeol Lee, and Donald T. Miller  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 1, pp. 104-124 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1886 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The cone photoreceptor’s outer segment (OS) experiences changes in optical path length, both in response to visible stimuli and as a matter of its daily course of renewal and shedding. These changes are of interest, to quantify function in healthy cells and assess dysfunction in diseased ones. While optical coherence tomography (OCT), combined with adaptive optics (AO), has permitted unprecedented three-dimensional resolution in the living retina, it has not generally been able to measure these OS dynamics, whose scale is smaller than OCT’s axial resolution of a few microns. A possible solution is to take advantage of the phase information encoded in the OCT signal. Phase-sensitive implementations of spectral-domain optical coherence tomography (SD-OCT) have been demonstrated, capable of resolving sample axial displacements much smaller than the imaging wavelength, but these have been limited to ex vivo samples. In this paper we present a novel technique for retrieving phase information from OCT volumes of the outer retina. The key component of our technique is quantification of phase differences within the retina. We provide a quantitative analysis of such phase information and show that–when combined with appropriate methods for filtering and unwrapping–it can improve the sensitivity to OS length change by more than an order of magnitude, down to 45 nm, slightly thicker than a single OS disc. We further show that phase sensitivity drops off with retinal eccentricity, and that the best location for phase imaging is close to the fovea. We apply the technique to the measurement of sub-resolution changes in the OS over matters of hours. Using custom software for registration and tracking, these microscopic changes are monitored in hundreds of cones over time. In two subjects, the OS was found to have average elongation rates of 150 nm/hr, values which agree with our previous findings.

© 2011 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.5070) Image processing : Phase retrieval
(170.0180) Medical optics and biotechnology : Microscopy
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(100.3175) Image processing : Interferometric imaging
(100.5088) Image processing : Phase unwrapping

ToC Category:
Optical Coherence Tomography

Original Manuscript: September 26, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: December 2, 2011
Published: December 13, 2011

Virtual Issues
February 6, 2012 Spotlight on Optics

Ravi S. Jonnal, Omer P. Kocaoglu, Qiang Wang, Sangyeol Lee, and Donald T. Miller, "Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics," Biomed. Opt. Express 3, 104-124 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. Miller, D. Williams, G. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res.36, 1067–1079 (1996). [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14, 2884–2892 (1997). [CrossRef]
  3. D. Williams, “Imaging single cells in the living retina.” Vision Res. (2011). [CrossRef] [PubMed]
  4. E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res.45, 3432–3444 (2005). [CrossRef] [PubMed]
  5. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13, 4792–4811 (2005). [CrossRef] [PubMed]
  6. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging,” Opt. Express13, 8532–8546 (2005). [CrossRef] [PubMed]
  7. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14, 4380–4394 (2006). [CrossRef] [PubMed]
  8. R. Zawadzki, B. Cense, Y. Zhang, S. Choi, D. Miller, and J. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16, 8126–8143 (2008). [CrossRef] [PubMed]
  9. E. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. Ahnelt, and W. Drexler, “Ultra-high resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express16, 11083–11094 (2008). [CrossRef] [PubMed]
  10. W. Gao, Y. Zhang, B. Cense, R. S. Jonnal, J. Rha, and D. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express16, 6486–501 (2008). [CrossRef] [PubMed]
  11. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci.47, 5487 (2006). [CrossRef]
  12. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express17, 21634–21651 (2009). [CrossRef] [PubMed]
  13. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2, 748–763 (2011). [CrossRef] [PubMed]
  14. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express15, 16141–16160 (2007). [CrossRef] [PubMed]
  15. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express18, 5257–5270 (2010). [CrossRef] [PubMed]
  16. M. Pircher, J. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with slo/oct,” Biomed. Opt. Express2, 100–112 (2011). [CrossRef] [PubMed]
  17. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. R. Besecker, W. Gao, and D. T. Miller, “3D imaging of cone photoreceptors over extended time periods using optical coherence tomography with adaptive optics,” Proc. SPIE7885, 78850C (2011),. [CrossRef]
  18. T. Akkin, D. P. Davé, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express12, 2377–2386 (2004). [CrossRef] [PubMed]
  19. M. Choma, A. Ellerbee, C. Yang, T. Creazzo, and J. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30, 1162–1164 (2005). [CrossRef] [PubMed]
  20. C. Joo, T. Akkin, B. Cense, B. Park, and J. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30, 2131–2133 (2005). [CrossRef] [PubMed]
  21. J. Izatt, M. Kulkarni, S. Yazdanfar, J. Barton, and A. Welch, “In vivo bidirectional color doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22, 1439–1441 (1997). [CrossRef]
  22. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express11, 3116–3121 (2003). [CrossRef] [PubMed]
  23. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14, 7821–7840 (2006). [CrossRef] [PubMed]
  24. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express17, 4095–4111 (2009). [CrossRef] [PubMed]
  25. A. Snyder, “Stiles-crawford effect-explanation and consequences,” Vision Res.13, 1115–1137 (1972). [CrossRef]
  26. C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography.” J. Comp. Neurol.292, 497–523 (1990). [CrossRef] [PubMed]
  27. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, W. Gao, and D. T. Miller, Imaging outer segment renewal in living human cone photoreceptors, presented at ARVO Annual Meeting (2010), Abstract 51:2933.
  28. D. Anderson, S. Fisher, and R. Steinberg, “Mammalian cones: disc shedding, phagocytosis, and renewal,” Invest. Ophth. Vis. Sci.17, 117–133 (1978).
  29. S. Beucher and F. Meyer, “The morphological approach to segmentation: the watershed transformation,” Opt. Eng.34, 433–433 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (5513 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited