OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 125–136

Optoacoustic monitoring of cerebral venous blood oxygenation through extracerebral blood

I. Y. Petrov, Y. Petrov, D. S. Prough, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 1, pp. 125-136 (2012)
http://dx.doi.org/10.1364/BOE.3.000125


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There is strong clinical evidence that controlling cerebral venous oxygenation (oxyhemoglobin saturation) is critically important for patients with severe traumatic brain injury as well as for patients undergoing cardiac surgery. However, the only available method for cerebral venous blood oxygenation monitoring is invasive and requires catheterization of the internal jugular vein. We designed and built a novel optoacoustic monitor of cerebral venous oxygenation as measured in the superior sagittal sinus (SSS), the large midline cerebral vein. To the best of our knowledge, optical monitoring of cerebral venous blood oxygenation through overlying extracerebral blood is reported for the first time in this paper. The system was capable of detecting SSS signals in vivo at 700, 800, and 1064 nm through the thick (5–6 mm) sheep skull containing the circulating blood. The high (submillimeter) in-depth resolution of the system provided identification of the SSS peaks in the optoacoustic signals. The SSS peak amplitude closely followed the actual SSS blood oxygenation measured invasively using catheterization, blood sampling, and “gold standard” CO-Oximetry. Our data indicate the system may provide accurate measurement of the SSS blood oxygenation in patients with extracerebral blood over the SSS.

© 2011 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Cardiovascular Applications

History
Original Manuscript: November 14, 2011
Revised Manuscript: December 8, 2011
Manuscript Accepted: December 12, 2011
Published: December 14, 2011

Citation
I. Y. Petrov, Y. Petrov, D. S. Prough, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, "Optoacoustic monitoring of cerebral venous blood oxygenation through extracerebral blood," Biomed. Opt. Express 3, 125-136 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-1-125


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Soehle, M. Jaeger, and J. Meixensberger, “Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage,” Neurol. Res.25(4), 411–417 (2003). [CrossRef] [PubMed]
  2. J. M. Murkin, “Perioperative detection of brain oxygenation and clinical outcomes in cardiac surgery,” Semin. Cardiothorac. Vasc. Anesth.8(1), 13–14 (2004). [CrossRef] [PubMed]
  3. C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998). [CrossRef] [PubMed]
  4. W. J. Stevens, “Multimodal monitoring: head injury management using SjvO2 and LICOX,” J. Neurosci. Nurs.36(6), 332–339 (2004). [CrossRef] [PubMed]
  5. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977). [CrossRef] [PubMed]
  6. J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004). [CrossRef] [PubMed]
  7. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, and D. S. Prough, “Optoacoustic technique for non-invasive continuous monitoring of blood oxygenation,” in Biomedical Topical Meetings (Optical Society of America, Washington DC, 2000), pp. 272–274.
  8. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt.41(22), 4722–4731 (2002). [CrossRef] [PubMed]
  9. Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005). [CrossRef] [PubMed]
  10. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Opt. Lett.31(12), 1827–1829 (2006). [CrossRef] [PubMed]
  11. H. P. Brecht, D. S. Prough, Y. Y. Petrov, I. Patrikeev, I. Y. Petrova, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system,” Opt. Express15(24), 16261–16269 (2007). [CrossRef] [PubMed]
  12. I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express17(9), 7285–7294 (2009). [CrossRef] [PubMed]
  13. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006). [CrossRef] [PubMed]
  14. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  15. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” J. Biol. Chem.148, 173–183 (1943).
  16. Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “In vivo noninvasive monitoring of cerebral blood with optoacoustic technique,” in 26th Annual International Conference of IEEE Engineering in Medicine and Biology Society (IEEE, NY, 2004), pp. 2052–2054.
  17. S. Jacques, “Optical absorption of melanin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/melanin/mua.html .
  18. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  19. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  20. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, WA, 2000).
  21. S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  22. “ANSI Z136.1—2000,” in American National Standard for Safe Use of Lasers (The Laser Institute of America, Orlando, FL, 2000).
  23. P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express15(6), 3301–3311 (2007). [CrossRef] [PubMed]
  24. F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am.63(5), 1576–1590 (1978). [CrossRef] [PubMed]
  25. J. Enderle, S. Blanchard, and J. Bronzino, Introduction to Biomedical Engineering (Academic, San Diego, CA, 2000), Chap. 15.
  26. I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999). [PubMed]
  27. M. X. Richardson, R. de Bruijn, and E. Schagatay, “Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit,” Eur. J. Appl. Physiol.105(1), 63–68 (2009). [CrossRef] [PubMed]
  28. T. Oka, T. Itoi, and K. Hamaoka, “Impaired transient elevation of blood hemoglobin in response to acute hypoxia in neonates with asplenia,” Pediatr. Int.49(6), 898–902 (2007). [CrossRef] [PubMed]
  29. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express2(9), 2655–2664 (2011). [CrossRef] [PubMed]
  30. V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009). [CrossRef]
  31. A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express18(19), 19592–19602 (2010). [CrossRef] [PubMed]
  32. J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express19(3), 2093–2104 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited