OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 192–205

A hematoma detector—a practical application of instrumental motion as signal in near infra-red imaging

Jason D. Riley, Franck Amyot, Tom Pohida, Randall Pursley, Yasaman Ardeshipour, Jana M. Kainerstorfer, Laleh Najafizadeh, Victor Chernomordik, Paul Smith, James Smirniotopoulos, Eric M. Wassermann, and Amir H. Gandjbakhche  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 1, pp. 192-205 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: In this paper we discuss results based on using instrumental motion as a signal rather than treating it as noise in Near Infra-Red (NIR) imaging. As a practical application to demonstrate this approach we show the design of a novel NIR hematoma detection device. The proposed device is based on a simplified single source configuration with a dual separation detector array and uses motion as a signal for detecting changes in blood volume in the dural regions of the head. The rapid triage of hematomas in the emergency room will lead to improved use of more sophisticated/expensive imaging facilities such as CT/MRI units. We present simulation results demonstrating the viability of such a device and initial phantom results from a proof of principle device. The results demonstrate excellent localization of inclusions as well as good quantitative comparisons.

© 2011 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: October 12, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 9, 2011
Published: December 20, 2011

Jason D. Riley, Franck Amyot, Tom Pohida, Randall Pursley, Yasaman Ardeshirpour, Jana M. Kainerstorfer, Laleh Najafizadeh, Victor Chernomordik, Paul Smith, James Smirniotopoulos, Eric M. Wassermann, and Amir H. Gandjbakhche, "A hematoma detector—a practical application of instrumental motion as signal in near infra-red imaging," Biomed. Opt. Express 3, 192-205 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997). [CrossRef] [PubMed]
  2. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007). [CrossRef] [PubMed]
  3. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007). [CrossRef] [PubMed]
  4. F. Abdelnour, B. Schmidt, and T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol.54(20), 6383–6413 (2009). [CrossRef] [PubMed]
  5. A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010). [CrossRef] [PubMed]
  6. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002). [CrossRef] [PubMed]
  7. A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011). [CrossRef] [PubMed]
  8. C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996). [CrossRef] [PubMed]
  9. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007). [PubMed]
  10. J. Riley, E. M. C. Hillman, J. Hebden, and S. R. Arridge, “Light transport in scattering domains containing non-scattering spaces,” in International Workshop—Comptational Problems of Electrical Engineering (2002), pp. 215–218.
  11. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009). [CrossRef] [PubMed]
  12. C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010). [CrossRef] [PubMed]
  13. C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010). [CrossRef] [PubMed]
  14. M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007). [CrossRef] [PubMed]
  15. A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008). [CrossRef] [PubMed]
  16. R. Ferguson, D. Hammer, A. Elsner, R. Webb, S. Burns, and J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express12(21), 5198–5208 (2004). [CrossRef] [PubMed]
  17. Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000). [CrossRef] [PubMed]
  18. J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010). [CrossRef] [PubMed]
  19. S. I. Turovets, P. S. Lovely, and D. M. Tucker, “Intracranial hematoma detection using near infrared light and local reference method,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper ME26.
  20. S. J. Erickson, S. L. Martinez, J. Gonzalez, L. Caldera, and A. Godavarty, “Improved detection limits using a hand-held optical imager with coregistration capabilities,” Biomed. Opt. Express1(1), 126–134 (2010). [CrossRef] [PubMed]
  21. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007). [CrossRef] [PubMed]
  22. D. D. Price and S. R. Wilson, “Epidural hematoma,” eMedicine Trauma (Jan 31, 2008).
  23. R. J. Meagher and W. F. Young, “Subdural hematoma,” eMedicine Neurology (2009).
  24. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001). [CrossRef] [PubMed]
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  26. J. Riley, “The radiosity-diffusion model in 3D,” Proc. SPIE4431, 153–164 (2001). [CrossRef]
  27. J. Riley, “Light transport in diffusing domains containing non-scattering spaces,” PhD thesis (University College London, 2005).
  28. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  29. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993). [CrossRef] [PubMed]
  30. J. M. Kainerstorfer, L. Najafizadeh, J. D. Riley, M. Ehler, F. Amyot, P. D. Smith, A. V. Medvedev, and A. H. Gandjbakhche, “Principal component wavelength optimization for hemoglobin reconstruction in near infrared diffuse optical imaging” (in preparation).
  31. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  32. J. C. Hebden, “Tissue-equivalent phantoms” (2011), http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/phantoms.htm .
  33. F. E. Schmidt, J. C. Hebden, E. M. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000). [CrossRef] [PubMed]
  34. A. H. Gandjbakhche and G. H. Weiss, “Descriptive parameter for photon trajectories in a turbid medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61(6Pt B), 6958–6962 (2000). [CrossRef] [PubMed]
  35. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1600 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited