OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 37–47

Extending vaterite microviscometry to ex vivo blood vessels by serial calibration

Samir G. Shreim, Earl Steward, and Elliot L. Botvinick  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 1, pp. 37-47 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The endothelial glycocalyx layer is a ~2 µm thick glycosaminoglycan rich pericellular matrix expressed on the luminal surface of vascular endothelial cells, which has implications in vessel mechanics and mechanotransduction. Despite its role in vascular physiology, no direct measurement has of yet been made of vessel glycocalyx material properties. Vaterite microviscometry is a laser tweezers based microrheological method, which has been previously utilized to measure the viscosity of linear and complex fluids under flow. This form of microrheology has until now relied on complete recollection of the forward scattered light. Here we present a novel method to extend vaterite microviscometry to relatively thick samples. We validate our method and its assumptions and measure the apparent viscosity as a function of distance from the vascular endothelium. We observe a differential response in conditions designed to preserve the EGL in comparison to those designed to collapse it.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(160.1435) Materials : Biomaterials

ToC Category:
Optical Traps, Manipulation, and Tracking

Original Manuscript: August 25, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 8, 2011
Published: December 5, 2011

Samir G. Shreim, Earl Steward, and Elliot L. Botvinick, "Extending vaterite microviscometry to ex vivo blood vessels by serial calibration," Biomed. Opt. Express 3, 37-47 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. F. Davies, “Flow-mediated endothelial mechanotransduction,” Physiol. Rev.75(3), 519–560 (1995). [PubMed]
  2. S. Chien, “Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell,” Am. J. Physiol. Heart Circ. Physiol.292(3), H1209–H1224 (2007). [CrossRef] [PubMed]
  3. S. Reitsma, D. W. Slaaf, H. Vink, M. A. M. J. van Zandvoort, and M. G. A. oude Egbrink, “The endothelial glycocalyx: composition, functions, and visualization,” Pflugers Arch.454(3), 345–359 (2007). [CrossRef] [PubMed]
  4. S. Weinbaum, J. M. Tarbell, and E. R. Damiano, “The structure and function of the endothelial glycocalyx layer,” Annu. Rev. Biomed. Eng.9(1), 121–167 (2007). [CrossRef] [PubMed]
  5. H. Vink and B. R. Duling, “Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries,” Circ. Res.79(3), 581–589 (1996). [PubMed]
  6. M. D. Savery and E. R. Damiano, “The endothelial glycocalyx is hydrodynamically relevant in arterioles throughout the cardiac cycle,” Biophys. J.95(3), 1439–1447 (2008). [CrossRef] [PubMed]
  7. M. L. Smith, D. S. Long, E. R. Damiano, and K. Ley, “Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo,” Biophys. J.85(1), 637–645 (2003). [CrossRef] [PubMed]
  8. M. M. Thi, J. M. Tarbell, S. Weinbaum, and D. C. Spray, “The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model,” Proc. Natl. Acad. Sci. U.S.A.101(47), 16483–16488 (2004). [CrossRef] [PubMed]
  9. J. M. Tarbell and M. Y. Pahakis, “Mechanotransduction and the glycocalyx,” J. Intern. Med.259(4), 339–350 (2006). [CrossRef] [PubMed]
  10. A. Oohira, T. N. Wight, and P. Bornstein, “Sulfated proteoglycans synthesized by vascular endothelial cells in culture,” J. Biol. Chem.258(3), 2014–2021 (1983). [PubMed]
  11. Y. Halden, A. Rek, W. Atzenhofer, L. Szilak, A. Wabnig, and A. J. Kungl, “Interleukin-8 binds to syndecan-2 on human endothelial cells,” Biochem. J.377(2), 533–538 (2004). [CrossRef] [PubMed]
  12. R. D. Rosenberg, N. W. Shworak, J. Liu, J. J. Schwartz, and L. Zhang, “Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated?” J. Clin. Invest.99(9), 2062–2070 (1997). [CrossRef] [PubMed]
  13. R. Kokenyesi and M. Bernfield, “Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1,” J. Biol. Chem.269(16), 12304–12309 (1994). [PubMed]
  14. N. Itano, T. Sawai, M. Yoshida, P. Lenas, Y. Yamada, M. Imagawa, T. Shinomura, M. Hamaguchi, Y. Yoshida, Y. Ohnuki, S. Miyauchi, A. P. Spicer, J. A. McDonald, and K. Kimata, “Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties,” J. Biol. Chem.274(35), 25085–25092 (1999). [CrossRef] [PubMed]
  15. N. Nijenhuis, D. Mizuno, J. A. Spaan, and C. F. Schmidt, “Viscoelastic response of a model endothelial glycocalyx,” Phys. Biol.6(2), 025014 (2009). [CrossRef] [PubMed]
  16. N. Nijenhuis, D. Mizuno, C. F. Schmidt, H. Vink, and J. A. E. Spaan, “Microrheology of hyaluronan solutions: implications for the endothelial glycocalyx,” Biomacromolecules9(9), 2390–2398 (2008). [CrossRef] [PubMed]
  17. C. B. S. Henry and B. R. Duling, “Permeation of the luminal capillary glycocalyx is determined by hyaluronan,” Am. J. Physiol.277(2 Pt 2), H508–H514 (1999). [PubMed]
  18. A. Yoneda and J. R. Couchman, “Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans,” Matrix Biol.22(1), 25–33 (2003). [CrossRef] [PubMed]
  19. P. V. Jensen and L. I. Larsson, “Actin microdomains on endothelial cells: association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing,” Histochem. Cell Biol.121(5), 361–369 (2004). [CrossRef] [PubMed]
  20. D. R. Potter and E. R. Damiano, “The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro,” Circ. Res.102(7), 770–776 (2008). [CrossRef] [PubMed]
  21. E. R. Damiano and T. M. Stace, “A mechano-electrochemical model of radial deformation of the capillary glycocalyx,” Biophys. J.82(3), 1153–1175 (2002). [CrossRef] [PubMed]
  22. Y. Han, S. Weinbaum, J. A. E. Spaan, and H. Vink, “Large-deformation analysis of the elastic recoil of fibre layers in a brinkman medium with application to the endothelial glycocalyx,” J. Fluid Mech.554(-1), 217–235 (2006). [CrossRef]
  23. T. W. Secomb, R. Hsu, and A. R. Pries, “Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity,” Am. J. Physiol. Heart Circ. Physiol.281(2), H629–H636 (2001). [PubMed]
  24. S. Weinbaum, X. Zhang, Y. Han, H. Vink, and S. C. Cowin, “Mechanotransduction and flow across the endothelial glycocalyx,” Proc. Natl. Acad. Sci. U.S.A.100(13), 7988–7995 (2003). [CrossRef] [PubMed]
  25. G. Knoner, S. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Characterization of optically driven fluid stress fields with optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(3), 031507 (2005). [CrossRef] [PubMed]
  26. S. J. W. Parkin, G. G. Knoener, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “A constant torque micro-viscometer,” in Nanomanipulation with Light (SPIE, San Jose, CA, USA, 2005), pp. 59–65.
  27. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett.92(19), 198104 (2004). [CrossRef] [PubMed]
  28. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt.48, 405–413 (2001).
  29. M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS ONE6(5), e20201 (2011). [CrossRef] [PubMed]
  30. M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J.74(2), 1074–1085 (1998). [CrossRef] [PubMed]
  31. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct.23(1), 247–285 (1994). [CrossRef] [PubMed]
  32. B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations,” Macromolecules30(25), 7781–7792 (1997). [CrossRef]
  33. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J.84(2), 1308–1316 (2003). [CrossRef] [PubMed]
  34. D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and passive microrheology in equilibrium and nonequilibrium systems,” Macromolecules41(19), 7194–7202 (2008). [CrossRef]
  35. F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations,” Phys. Rev. Lett.79(17), 3286–3289 (1997). [CrossRef]
  36. R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir25(19), 11672–11679 (2009). [CrossRef] [PubMed]
  37. R. H. Adamson and G. Clough, “Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels,” J. Physiol.445, 473–486 (1992). [PubMed]
  38. S. Mochizuki, H. Vink, O. Hiramatsu, T. Kajita, F. Shigeto, J. A. E. Spaan, and F. Kajiya, “Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release,” Am. J. Physiol. Heart Circ. Physiol.285(2), H722–H726 (2003). [PubMed]
  39. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026301 (2009). [CrossRef] [PubMed]
  40. Y. C. Fung, “What are the residual stresses doing in our blood vessels?” Ann. Biomed. Eng.19(3), 237–249 (1991). [CrossRef] [PubMed]
  41. A. E. X. Brown, R. I. Litvinov, D. E. Discher, P. K. Purohit, and J. W. Weisel, “Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water,” Science325(5941), 741–744 (2009). [CrossRef] [PubMed]
  42. J. P. Winer, S. Oake, and P. A. Janmey, “Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation,” PLoS ONE4(7), e6382 (2009). [CrossRef] [PubMed]
  43. E. W. Errill, “Rheology of blood,” Physiol. Rev.49(4), 863–888 (1969). [PubMed]
  44. R. T. Megens, S. Reitsma, P. H. Schiffers, R. H. Hilgers, J. G. De Mey, D. W. Slaaf, M. G. oude Egbrink, and M. A. van Zandvoort, “Two-photon microscopy of vital murine elastic and muscular arteries,” J. Vasc. Res.44(2), 87–98 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited