OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 48–54

Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS)

Liang Gao, R. Theodore Smith, and Tomasz S. Tkaczyk  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 1, pp. 48-54 (2012)
http://dx.doi.org/10.1364/BOE.3.000048


View Full Text Article

Enhanced HTML    Acrobat PDF (1413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS) for eye imaging applications. The resulting system is capable of simultaneously acquiring 48 spectral channel images in the range 470 nm–650 nm with frame rate at 5.2 fps. The spatial sampling of each measured spectral scene is 350 × 350 pixels. The advantages of this snapshot device are elimination of the eye motion artifacts and pixel misregistration problems in traditional scanning-based hyperspectral retinal cameras, and real-time imaging of oxygen saturation dynamics with sub-second temporal resolution. The spectral imaging performance is demonstrated in a human retinal imaging experiment in vivo. The absorption spectral signatures of oxy-hemoglobin and macular pigments were successfully acquired by using this device.

© 2011 OSA

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Molecular Imaging and Probe Development

History
Original Manuscript: October 13, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: December 2, 2011
Published: December 7, 2011

Citation
Liang Gao, R. Theodore Smith, and Tomasz S. Tkaczyk, "Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS)," Biomed. Opt. Express 3, 48-54 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-1-48


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Invest. Ophthalmol. Vis. Sci.45(5), 1464–1472 (2004). [CrossRef] [PubMed]
  2. B. Khoobehi and J. Beach, “Hyperspectral image analysis for oxygen saturation automated localization of the eye,” in Computational Analysis of the Human Eye with Applications, S. Dua, U. R. Acharya, and E. Y. K. Ng, eds. (World Scientific, 2011), pp. 123–185.
  3. V. Diaconu, “Multichannel spectroreflectometry: a noninvasive method for assessment of on-line hemoglobin derivatives,” Appl. Opt.48(10), D52–D61 (2009). [CrossRef] [PubMed]
  4. V. Vucea, P. J. Bernard, P. Sauvageau, and V. Diaconu, “Blood oxygenation measurements by multichannel reflectometry on the venous and arterial structures of the retina,” Appl. Opt.50(26), 5185–5191 (2011). [CrossRef] [PubMed]
  5. S. Beatty, M. Boulton, D. Henson, H. H. Koh, and I. J. Murray, “Macular pigment and age related macular degeneration,” Br. J. Ophthalmol.83(7), 867–877 (1999). [CrossRef] [PubMed]
  6. Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Vis. Sci.45, U935 (2004).
  7. N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum.81(9), 093706 (2010). [CrossRef] [PubMed]
  8. G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt.12(1), 014036 (2007).
  9. N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt.47(28), F85–F95 (2008). [CrossRef] [PubMed]
  10. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express17(15), 12293–12308 (2009). [CrossRef] [PubMed]
  11. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express18(14), 14330–14344 (2010). [CrossRef] [PubMed]
  12. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011). [CrossRef] [PubMed]
  13. R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt.49(10), 1886–1899 (2010). [CrossRef] [PubMed]
  14. P. L. Davis and W. M. Jay, “Optic nerve head drusen,” Semin. Ophthalmol.18(4), 222–242 (2003). [CrossRef] [PubMed]
  15. H. R. Kang, Computational Color Technology (SPIE Press, Bellingham, Wash., 2006).
  16. D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng.46(12), 1454–1465 (1999). [CrossRef] [PubMed]
  17. N. Lee, J. Wielaard, A. A. Fawzi, P. Sajda, A. F. Laine, G. Martin, M. S. Humayun, and R. T. Smith, “In vivo snapshot hyperspectral image analysis of age-related macular degeneration,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 5363–5366.
  18. J. Beach, J. F. Ning, and B. Khoobehi, “Oxygen saturation in optic nerve head structures by hyperspectral image analysis,” Curr. Eye Res.32(2), 161–170 (2007). [CrossRef] [PubMed]
  19. C. Auw-Haedrich, M. Mathieu, and L. L. Hansen, “Complete circumvention of central retinal artery and venous cilioretinal shunts in optic disc drusen,” Arch. Ophthalmol.114(10), 1285–1287 (1996). [CrossRef] [PubMed]
  20. J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999). [PubMed]
  21. A. A. Fawzi, N. Lee, J. H. Acton, A. F. Laine, and R. T. Smith, “Recovery of macular pigment spectrum in vivo using hyperspectral image analysis,” J. Biomed. Opt.16(10), 106008 (2011). [CrossRef] [PubMed]
  22. B. Davis, S. Russell, M. Abramoff, S. C. Nemeth, E. S. Barriga, and P. Soliz, “Identification of spectral phenojours in age-related macular degeneration patients,” Proc. SPIE6426, 64261I, 64261I-11 (2007). [CrossRef]
  23. R. A. Bone, B. Brener, and J. C. Gibert, “Macular pigment, photopigments, and melanin: distributions in young subjects determined by four-wavelength reflectometry,” Vision Res.47(26), 3259–3268 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (927 KB)      QuickTime
» Media 2: MOV (1518 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited