OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 86–103

Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model

Vedran Kajić, Marieh Esmaeelpour, Boris Považay, David Marshall, Paul L. Rosin, and Wolfgang Drexler  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 1, pp. 86-103 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two stage statistical model based on texture and shape for fully automatic choroidal segmentation of normal and pathologic eyes obtained by a 1060 nm optical coherence tomography (OCT) system is developed. A novel dynamic programming approach is implemented to determine location of the retinal pigment epithelium/ Bruch’s membrane /choriocapillaris (RBC) boundary. The choroid–sclera interface (CSI) is segmented using a statistical model. The algorithm is robust even in presence of speckle noise, low signal (thick choroid), retinal pigment epithelium (RPE) detachments and atrophy, drusen, shadowing and other artifacts. Evaluation against a set of 871 manually segmented cross-sectional scans from 12 eyes achieves an average error rate of 13%, computed per tomogram as a ratio of incorrectly classified pixels and the total layer surface. For the first time a fully automatic choroidal segmentation algorithm is successfully applied to a wide range of clinical volumetric OCT data.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

Original Manuscript: November 1, 2011
Revised Manuscript: December 8, 2011
Manuscript Accepted: December 8, 2011
Published: December 12, 2011

Vedran Kajić, Marieh Esmaeelpour, Boris Považay, David Marshall, Paul L. Rosin, and Wolfgang Drexler, "Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model," Biomed. Opt. Express 3, 86-103 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008), Vol. 1.
  2. M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010). [CrossRef] [PubMed]
  3. W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977). [PubMed]
  4. D. S. McLeod and G. A. Lutty, “High-resolution histologic analysis of the human choroidal vasculature,” Invest. Ophthalmol. Vis. Sci.35(11), 3799–3811 (1994). [PubMed]
  5. S. H. Sarks, “Ageing and degeneration in the macular region: a clinico-pathological study,” Br. J. Ophthalmol.60(5), 324–341 (1976). [CrossRef] [PubMed]
  6. Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997). [CrossRef] [PubMed]
  7. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011). [CrossRef] [PubMed]
  8. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  9. A. K. Mishra, P. W. Fieguth, and D. A. Clausi, “Decoupled active contour (DAC) for boundary detection,” IEEE Trans. Pattern Anal. Mach. Intell.33(2), 310–324 (2011). [CrossRef] [PubMed]
  10. J. Molnár, D. Chetverikov, D. Cabrera DeBuc, W. Gao, and G. Somfai, “Layer extraction in rodent retinal images acquired by optical coherence tomography,” Mach. Vis. Appl. (2011). [CrossRef]
  11. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  12. M. V. Sarunic, A. Yazdanpanah, E. Gibson, J. Xu, Y. Bai, S. Lee, H. U. Saragovi, and M. F. Beg, “Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography,” Opt. Express18(22), 23435–23441 (2010). [CrossRef] [PubMed]
  13. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2(6), 1743–1756 (2011). [CrossRef] [PubMed]
  14. M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients,” Biomed. Opt. Express1(5), 1358–1383 (2010). [CrossRef] [PubMed]
  15. F. Rossant, I. Ghorbel, I. Bloch, M. Paques, and S. Tick, “Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI '09 (IEEE, 2009), pp. 1370–1373.
  16. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010). [CrossRef] [PubMed]
  17. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001). [CrossRef] [PubMed]
  18. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18(20), 21293–21307 (2010). [CrossRef] [PubMed]
  19. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009 (Springer-Verlag, London, UK, 2009), pp. 649–656.
  20. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging27(10), 1495–1505 (2008). [CrossRef] [PubMed]
  21. D. Tolliver, Y. Koutis, H. Ishikawa, J. S. Schuman, and G. L. Miller, “Unassisted segmentation of multiple retinal layers via spectral rounding,” in ARVO 2008 Annual Meeting (Association for Research in Vision and Ophthalmology, 2008), poster.
  22. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007). [CrossRef] [PubMed]
  23. B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009). [CrossRef] [PubMed]
  24. P. Thevenaz and M. Unser, “A pyramid approach to sub-pixel image fusion based on mutual information,” in International Conference on Image Processing, 1996. Proceedings (1996), vol. 1, pp. 265–268.
  25. I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The Dual-Tree Complex Wavelet Transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005). [CrossRef]
  26. I. Perkon, A. Košir, J. Tasič, and M. Diamond, “Whisker detection as a shortest path problem,” presented at Visual Observation and Analysis of Animal and Insect Behavior, Istanbul, Aug. 22, 2010.
  27. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010). [CrossRef] [PubMed]
  28. M. Scholz, M. Fraunholz, and J. Selbig, “Nonlinear principal component analysis: neural network models and applications,” in Principal Manifolds for Data Visualization and Dimension Reduction (Springer, 2007), pp. 44–67.
  29. M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics21(20), 3887–3895 (2005). [CrossRef] [PubMed]
  30. T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Trans. Pattern Anal. Mach. Intell.23(6), 681–685 (2001). [CrossRef]
  31. J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput.22(10), 761–767 (2004). [CrossRef]
  32. A. Vedaldi and B. Fulkerson, “VLFeat: an open and portable library of computer vision algorithms” (2008), http://www.vlfeat.org/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited