OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2371–2380

Separation of absorption and scattering properties of turbid media using relative spectrally resolved cw radiance measurements

Serge Grabtchak and William M. Whelan  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2371-2380 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new method for extracting the effective attenuation coefficient and the diffusion coefficient from relative spectrally resolved cw radiance measurements using the diffusion approximation. The method is validated on both simulated and experimental radiance data sets using Intralipid-1% as a test platform. The effective attenuation coefficient is determined from a simple algebraic expression constructed from a ratio of two radiance measurements at two different source–detector separations and the same 90° angle. The diffusion coefficient is determined from another ratio constructed from two radiance measurements at two angles (0° and 180°) and the same source–detector separation. The conditions of the validity of the method as well as possible practical applications are discussed.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(290.4210) Scattering : Multiple scattering
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: June 12, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: August 27, 2012
Published: September 4, 2012

Serge Grabtchak and William M. Whelan, "Separation of absorption and scattering properties of turbid media using relative spectrally resolved cw radiance measurements," Biomed. Opt. Express 3, 2371-2380 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. M. Star, “Light dosimetry in vivo,” Phys. Med. Biol.42(5), 763–787 (1997). [CrossRef] [PubMed]
  2. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010). [CrossRef]
  3. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue II. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci.6(4), 379–390 (1991). [CrossRef]
  4. S. R. H. Davidson, R. A. Weersink, M. A. Haider, M. R. Gertner, A. Bogaards, D. Giewercer, A. Scherz, M. D. Sherar, M. Elhilali, J. L. Chin, J. Trachtenberg, and B. C. Wilson, “Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer,” Phys. Med. Biol.54(8), 2293–2313 (2009). [CrossRef] [PubMed]
  5. M. L. Pantelides, C. Whitehurst, J. V. Moore, T. A. King, and N. J. Blacklock, “Photodynamic therapy for localised prostatic cancer: light penetration in the human prostate gland,” J. Urol.143(2), 398–401 (1990). [PubMed]
  6. C. M. Moore, C. A. Mosse, C. Allen, H. Payne, M. Emberton, and S. G. Bown, “Light penetration in the human prostate: a whole prostate clinical study at 763 nm,” J. Biomed. Opt.16(1), 015003 (2011). [CrossRef] [PubMed]
  7. D. T. Delpy and M. Cope, ““Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London Ser. B352(1354), 649–659 (1997). [CrossRef]
  8. A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed. (Springer, 2011).
  9. L. H. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  10. F. Martelli, S. del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and software (SPIE, 2010).
  11. F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. Med. Biol.45(5), 1359–1373 (2000). [CrossRef] [PubMed]
  12. B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues - principles and applications,” IEEE J. Quantum Electron.26(12), 2186–2199 (1990). [CrossRef]
  13. L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt.15(9), 2059–2067 (1976). [CrossRef] [PubMed]
  14. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt.22(16), 2456–2462 (1983). [CrossRef] [PubMed]
  15. R. A. J. Groenhuis, J. J. Ten Bosch, and H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2: measuring method and calibration,” Appl. Opt.22(16), 2463–2467 (1983). [CrossRef] [PubMed]
  16. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  17. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt.35(10), 1756–1766 (1996). [CrossRef] [PubMed]
  18. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt.36(22), 5655–5661 (1997). [CrossRef] [PubMed]
  19. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999). [CrossRef] [PubMed]
  20. W. Ko, Y. Kwak, and S. Kim, “Measurement of optical coefficients of tissue-like solutions using a combination method of infinite and semi-infinite geometries with continuous near infrared light,” Jpn. J. Appl. Phys.45(9A), 7158–7162 (2006). [CrossRef]
  21. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005). [CrossRef] [PubMed]
  22. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt.42(19), 4023–4030 (2003). [CrossRef] [PubMed]
  23. A. Johansson, J. Axelsson, S. Andersson-Engels, and J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys.34(11), 4309–4321 (2007). [CrossRef] [PubMed]
  24. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  25. B. C. Wilson, M. S. Patterson, and D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci.1(4), 235–244 (1986). [CrossRef]
  26. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt.40(7), 1155–1164 (2001). [CrossRef] [PubMed]
  27. A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005). [CrossRef] [PubMed]
  28. T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B79(3), 231–241 (2005). [CrossRef] [PubMed]
  29. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983). [CrossRef] [PubMed]
  30. A. M. Ballangrud, P. J. Wilson, G. G. Miller, R. B. Moore, M. S. McPhee, and J. Tulip, “Light distribution and optical coefficients in prostate tumor,” Proc. SPIE2371, 148–152 (1995).
  31. A. M. Ballangrud, P. J. Wilson, K. Brown, G. G. Miller, R. B. Moore, M. S. McPhee, and J. Tulip, “Anisotropy of radiance in tissue phantoms and Dunning R3327 rat tumors: radiance measurements with flat cleaved fiber probes,” Lasers Surg. Med.19(4), 471–479 (1996). [CrossRef] [PubMed]
  32. O. Barajas, A. M. Ballangrud, G. G. Miller, R. B. Moore, and J. Tulip, “Monte Carlo modelling of angular radiance in tissue phantoms and human prostate: PDT light dosimetry,” Phys. Med. Biol.42(9), 1675–1687 (1997). [CrossRef] [PubMed]
  33. D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol.46(9), 2359–2370 (2001). [CrossRef] [PubMed]
  34. T. Xu, C. P. Zhang, X. Y. Wang, L. S. Zhang, and J. G. Tian, “Measurement and analysis of light distribution in intralipid-10% at 650 nm,” Appl. Opt.42(28), 5777–5784 (2003). [CrossRef] [PubMed]
  35. T. Xu, C. P. Zhang, G. Y. Chen, J. G. Tian, G. Y. Zhang, and C. M. Zhao, “Theoretical and experimental study of the intensity distribution in biological tissues,” Chin. Phys.14(9), 1813–1820 (2005). [CrossRef]
  36. L. C. L. Chin, W. M. Whelan, and I. A. Vitkin, “Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification,” Appl. Opt.45(9), 2101–2114 (2006). [CrossRef] [PubMed]
  37. L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt.12(6), 064027 (2007). [CrossRef] [PubMed]
  38. L. C. L. Chin, B. Lloyd, W. M. Whelan, and I. A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009). [CrossRef]
  39. S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011). [CrossRef] [PubMed]
  40. S. Grabtchak, T. J. Palmer, and W. Whelan, “Radiance spectroscopy tool box for characterizing Au nanoparticles in tissue mimicking phantoms as applied to prostate,” J. Cancer Sci. Ther.S1, 8 (2011).
  41. S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012). [CrossRef] [PubMed]
  42. J. Fishkin, E. Gratton, M. J. Vandeven, and W. W. Mantulin, “Diffusion of intensity modulated near-IR light in turbid media,” Proc. SPIE1431, 122–135 (1991). [CrossRef]
  43. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt.30(31), 4474–4476 (1991). [CrossRef] [PubMed]
  44. J. M. Schmitt, A. Knüttel, and J. R. Knutson, “Interference of diffusive light waves,” J. Opt. Soc. Am. A9(10), 1832–1843 (1992). [CrossRef] [PubMed]
  45. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt.32(4), 607–616 (1993). [CrossRef] [PubMed]
  46. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998). [CrossRef]
  47. S. Fantini, M. A. Franceschinifantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain mutlichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995). [CrossRef]
  48. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994). [CrossRef] [PubMed]
  49. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  50. S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt.28(12), 2223–2229 (1989). [CrossRef] [PubMed]
  51. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett.15(21), 1179–1181 (1990). [CrossRef] [PubMed]
  52. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007). [CrossRef] [PubMed]
  53. T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008). [CrossRef] [PubMed]
  54. A. Liemert and A. Kienle, “Analytical Green’s function of the radiative transfer radiance for the infinite medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(3), 036605 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited