OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2419–2427

Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap

Mehmet E. Solmaz, Roshni Biswas, Shalene Sankhagowit, James R. Thompson, Camilo A. Mejia, Noah Malmstadt, and Michelle L. Povinelli  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2419-2427 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.

© 2012 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Traps, Manipulation, and Tracking

Original Manuscript: June 11, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: August 16, 2012
Published: September 7, 2012

Mehmet E. Solmaz, Roshni Biswas, Shalene Sankhagowit, James R. Thompson, Camilo A. Mejia, Noah Malmstadt, and Michelle L. Povinelli, "Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap," Biomed. Opt. Express 3, 2419-2427 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices5(1), 61–67 (2003). [CrossRef]
  2. C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008). [CrossRef]
  3. N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010). [CrossRef] [PubMed]
  4. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001). [CrossRef] [PubMed]
  5. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005). [CrossRef] [PubMed]
  6. M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE6080, 60800P (2006). [CrossRef]
  7. R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature459(7245), 379–385 (2009). [CrossRef] [PubMed]
  8. D. Marsh, “Protein modulation of lipids, and vice-versa, in membranes,” Biochim. Biophys. Acta1778(7-8), 1545–1575 (2008). [CrossRef] [PubMed]
  9. D. Marsh, “Elastic curvature constants of lipid monolayers and bilayers,” Chem. Phys. Lipids144(2), 146–159 (2006). [CrossRef] [PubMed]
  10. L. V. Chernomordik and M. M. Kozlov, “Mechanics of membrane fusion,” Nat. Struct. Mol. Biol.15(7), 675–683 (2008). [CrossRef] [PubMed]
  11. E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J.13(9), 941–954 (1973). [CrossRef] [PubMed]
  12. E. Evans and D. Needham, “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions,” J. Phys. Chem.91(16), 4219–4228 (1987). [CrossRef]
  13. D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J.88(4), 2714–2726 (2005). [CrossRef] [PubMed]
  14. V. Heinrich and R. E. Waugh, “A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes,” Ann. Biomed. Eng.24(5), 595–605 (1996). [CrossRef] [PubMed]
  15. R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter3(7), 817–827 (2007). [CrossRef]
  16. M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A44(12), 8356–8360 (1991). [CrossRef] [PubMed]
  17. R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter6(7), 1472–1482 (2010). [CrossRef]
  18. T. M. Pinon, L. S. Hirst, and J. E. Sharping, “Fiber-based dual-beam optical trapping system for studying lipid vesicle mechanics,” in Optical Trapping Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTTuB2.
  19. T. M. Pinon, L. S. Hirst, and J. E. Sharping, “Optical trapping and stretching of lipid vesicles,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper ATh1M.4.
  20. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express15(23), 15493–15499 (2007). [CrossRef] [PubMed]
  21. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J.40(9), 1109–1114 (2011). [CrossRef] [PubMed]
  22. M. Yamazaki and T. Ito, “Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion,” Biochemistry29(5), 1309–1314 (1990). [CrossRef] [PubMed]
  23. W. Helfrich, “Lipid bilayer spheres - Deformation and birefringence in magnetic-fields,” Phys. Lett. A43(5), 409–410 (1973). [CrossRef]
  24. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev.24, 156 (1970).
  25. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun.21(1), 189–194 (1977). [CrossRef]
  26. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt.32(19), 3531–3540 (1993). [CrossRef] [PubMed]
  27. M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci.89, 127–131 (1992). [CrossRef]
  28. E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett.64(17), 2094–2097 (1990). [CrossRef] [PubMed]
  29. P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J.96(12), 4789–4803 (2009). [CrossRef] [PubMed]
  30. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt.36(25), 6423–6433 (1997). [CrossRef] [PubMed]
  31. H. Sosa-Martínez and J. C. Gutierrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap,” J. Opt. Soc. Am. B26(11), 2109–2116 (2009). [CrossRef]
  32. J. R. Henriksen and J. H. Ipsen, “Measurement of membrane elasticity by micro-pipette aspiration,” Eur Phys J E Soft Matter14(2), 149–167 (2004). [CrossRef] [PubMed]
  33. H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta1798(7), 1333–1337 (2010). [CrossRef] [PubMed]
  34. J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity,” Eur. Biophys. J.33(8), 732–741 (2004). [CrossRef] [PubMed]
  35. M. Kocun and A. Janshoff, “Pulling tethers from pore-spanning bilayers: towards simultaneous determination of local bending modulus and lateral tension of membranes,” Small8(6), 847–851 (2012). [CrossRef] [PubMed]
  36. G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature,” J. Phys.5, 413–425 (1995).
  37. L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(6), 5389–5407 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (3959 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited