OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2428–2435

Real-time video mosaicing with a high-resolution microendoscope

Noah Bedard, Timothy Quang, Kathleen Schmeler, Rebecca Richards-Kortum, and Tomasz S. Tkaczyk  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2428-2435 (2012)
http://dx.doi.org/10.1364/BOE.3.002428


View Full Text Article

Enhanced HTML    Acrobat PDF (1877 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microendoscopes allow clinicians to view subcellular features in vivo and in real-time, but their field-of-view is inherently limited by the small size of the probe’s distal end. Video mosaicing has emerged as an effective technique to increase the acquired image size. Current implementations are performed post-procedure, which removes the benefits of live imaging. In this manuscript we present an algorithm for real-time video mosaicing using a low-cost high-resolution microendoscope. We present algorithm execution times and show image results obtained from in vivo tissue.

© 2012 OSA

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: June 19, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: September 6, 2012
Published: September 7, 2012

Citation
Noah Bedard, Timothy Quang, Kathleen Schmeler, Rebecca Richards-Kortum, and Tomasz S. Tkaczyk, "Real-time video mosaicing with a high-resolution microendoscope," Biomed. Opt. Express 3, 2428-2435 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2(12), 941–950 (2005). [CrossRef] [PubMed]
  2. K. E. Loewke, D. B. Camarillo, C. A. Jobst, and J. K. Salisbury, “Real-time image mosaicing for medical applications,” Stud. Health Technol. Inform.125, 304–309 (2007). [PubMed]
  3. M. L. Hearp, A. M. Locante, M. Ben-Rubin, R. Dietrich, and O. David, “Validity of sampling error as a cause of noncorrelation,” Cancer111(5), 275–279 (2007). [CrossRef] [PubMed]
  4. V. Becker, T. Vercauteren, C. H. von Weyhern, C. Prinz, R. M. Schmid, and A. Meining, “High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video),” Gastrointest. Endosc.66(5), 1001–1007 (2007). [CrossRef] [PubMed]
  5. T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal.10(5), 673–692 (2006). [CrossRef] [PubMed]
  6. K. Wu, J. J. Liu, W. Adams, G. A. Sonn, K. E. Mach, Y. Pan, A. H. Beck, K. C. Jensen, and J. C. Liao, “Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy,” Urology78(1), 225–231 (2011). [CrossRef] [PubMed]
  7. T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XV (International Society for Optical Engineering, San Jose, CA, USA, 2008).
  8. K. E. Loewke, D. B. Camarillo, W. Piyawattanametha, M. J. Mandella, C. H. Contag, S. Thrun, and J. K. Salisbury, “In vivo micro-image mosaicing,” IEEE Trans. Biomed. Eng.58(1), 159–171 (2011). [CrossRef] [PubMed]
  9. A. Behrens, M. Bommes, T. Stehle, S. Gross, S. Leonhardt, and T. Aach, “Real-time image composition of bladder mosaics in fluorescence endoscopy,” Comput. Sci. Res. Dev.26, 51–64 (2011).
  10. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express15(25), 16413–16423 (2007). [CrossRef] [PubMed]
  11. T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck34(3), 305–312 (2012). [CrossRef] [PubMed]
  12. M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp.47(47), 2306 (2011). [PubMed]
  13. M. Elter, S. Rupp, and C. Winter, “Physically motivated reconstruction of fiberscopic images,” in 18th International Conference on Pattern Recognition (Hong Kong, 2006), pp. 599–602.
  14. B. L. Luck, K. D. Carlson, A. C. Bovik, and R. R. Richards-Kortum, “An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue,” IEEE Trans. Image Process.14(9), 1265–1276 (2005). [CrossRef] [PubMed]
  15. S. Rupp, C. Winter, and M. Elter, “Evaluation of spatial interpolation strategies for the removal of comb-structure in fiber-optic images ” in 31st Annual International Conference of the IEEE EMBS (Minneapolis, Minnesota, USA, 2009), pp. 3677–3680.
  16. P. Soille, Morphological Image Analysis: Principles and Applications (Springer, 1999).
  17. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (697 KB)      Windows Media Player
» Media 2: AVI (1159 KB)      Windows Media Player
» Media 3: AVI (1214 KB)      Windows Media Player
» Media 4: AVI (688 KB)      Windows Media Player

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited