OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2510–2525

Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

Jinyu Wang, Jean-François Léger, Jonas Binding, A. Claude Boccara, Sylvain Gigan, and Laurent Bourdieu  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2510-2525 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

© 2012 OSA

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(110.0113) Imaging systems : Imaging through turbid media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: June 27, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: September 10, 2012
Published: September 13, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Jinyu Wang, Jean-François Léger, Jonas Binding, A. Claude Boccara, Sylvain Gigan, and Laurent Bourdieu, "Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer," Biomed. Opt. Express 3, 2510-2525 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett.25(1), 52–54 (2000). [CrossRef] [PubMed]
  2. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  3. M. J. Booth, M. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A19(10), 2112–2120 (2002). [CrossRef] [PubMed]
  4. M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  5. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express16(13), 9290–9305 (2008). [CrossRef] [PubMed]
  6. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  7. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  8. N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012). [CrossRef] [PubMed]
  9. B. M. Hanser, M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc.216(1), 32–48 (2004). [CrossRef] [PubMed]
  10. M. Rueckel and W. Denk, “Properties of coherence-gated wavefront sensing,” J. Opt. Soc. Am. A24(11), 3517–3529 (2007). [CrossRef] [PubMed]
  11. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  12. M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett.29(19), 2255–2257 (2004). [CrossRef] [PubMed]
  13. H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 3rd ed., D. Malacara, ed. (Wiley-Interscience, Hoboken, NJ, 2007), pp. 547–667.
  14. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express18(4), 3458–3476 (2010). [CrossRef] [PubMed]
  15. J. Wang, J.-F. Leger, J. Binding, C. Boccara, S. Gigan, and L. Bourdieu, “Measuring aberrations in the rat brain by a new coherence-gated wavefront sensor using a Linnik interferometer,” Proc. SPIE8227, 822702, 822702-7 (2012). [CrossRef]
  16. J. Wang, J.-F. Léger, J. Binding, C. Boccara, S. Gigan, and L. Bourdieu, “Measuring known aberrations in rat brain slices with Coherence-Gated Wavefront Sensor based on a Linnik interferometer,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), BTu3A.83.
  17. J. Binding, J. Ben Arous, J. F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express19(6), 4833–4847 (2011). [CrossRef] [PubMed]
  18. R. Crane, “Interference phase measurement,” Appl. Opt.8, 538–542 (1969).
  19. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A4(1), 267–280 (1987). [CrossRef]
  20. R. Gens, “Two-dimensional phase unwrapping for radar interferometry: developments and new challenges,” Int. J. Remote Sens.24(4), 703–710 (2003). [CrossRef]
  21. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am.66(3), 207–211 (1976). [CrossRef]
  22. A. V. Larichev, P. V. Ivanov, I. G. Iroshnikov, and V. I. Shmal'gauzen, “Measurement of eye aberrations in a speckle field,” Quantum Electron.31(12), 1108–1112 (2001). [CrossRef]
  23. A. V. Koryabin, V. I. Polezhaev, and V. I. Shmal'gauzen, “Measurement of the thermooptic aberrations of active elements based on yttrium aluminate and garnet,” Quantum Electron.23(10), 899–901 (1993). [CrossRef]
  24. M. Rückel, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Ph.D. thesis (Ruperto-Carola University of Heidelberg, 2006).
  25. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express12(1), 176–188 (2004). [CrossRef] [PubMed]
  26. T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” Proc. SPIE8227, 82271T, 82271T-6 (2012). [CrossRef]
  27. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66(11), 1145–1150 (1976). [CrossRef]
  28. J. Mertz, Introduction to Optical Microscopy (Roberts, Greenwood Village, CO, 2010).
  29. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods111(1), 29–37 (2001). [CrossRef] [PubMed]
  30. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A.95(26), 15741–15746 (1998). [CrossRef] [PubMed]
  31. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  32. C. Wang, L. Qiao, F. He, Y. Cheng, and Z. Xu, “Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source,” J. Microsc.243(2), 179–183 (2011). [CrossRef] [PubMed]
  33. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011). [CrossRef] [PubMed]
  34. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett.20(21), 2258 (1995). [CrossRef] [PubMed]
  35. R. Juškaitis, “Characterizing high numerical aperture microscope objective lenses,” in Optical Imaging and Microscopy, 2nd ed., P. Török and F.-J. Kao, eds. (Springer-Verlag, Berlin, 2007), pp. 21–45.
  36. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998). [CrossRef]
  37. M. Feierabend, “Coherence-gated wave-front sensing in strongly scattering samples,” Ph.D. thesis (Ruperto-Carola University of Heidelberg, 2004).
  38. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited