OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2537–2549

The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope

Toco Y. P. Chui, Dean A. VanNasdale, and Stephen A. Burns  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2537-2549 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4105 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retinal vascular diseases are a leading cause of blindness and visual disability. The advent of adaptive optics retinal imaging has enabled us to image the retinal vascular at cellular resolutions, but imaging of the vasculature can be difficult due to the complex nature of the images, including features of many other retinal structures, such as the nerve fiber layer, glial and other cells. In this paper we show that varying the size and centration of the confocal aperture of an adaptive optics scanning laser ophthalmoscope (AOSLO) can increase sensitivity to multiply scattered light, especially light forward scattered from the vasculature and erythrocytes. The resulting technique was tested by imaging regions with different retinal tissue reflectivities as well as within the optic nerve head.

© 2012 OSA

OCIS Codes
(110.1220) Imaging systems : Apertures
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(110.1085) Imaging systems : Adaptive imaging

ToC Category:
Ophthalmology Applications

Original Manuscript: August 2, 2012
Revised Manuscript: September 10, 2012
Manuscript Accepted: September 10, 2012
Published: September 13, 2012

Virtual Issues
October 5, 2012 Spotlight on Optics

Toco Y. P. Chui, Dean A. VanNasdale, and Stephen A. Burns, "The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope," Biomed. Opt. Express 3, 2537-2549 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004). [CrossRef] [PubMed]
  2. N. R. Burrows, I. A. Hora, Y. Li, J. B. Saaddine, and Centers for Disease Control and Prevention (CDC), “Self-reported visual impairment among persons with diagnosed diabetes—United States, 1997–2010,” MMWR Morb. Mortal. Wkly. Rep.60(45), 1549–1553 (2011). [PubMed]
  3. F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006). [CrossRef] [PubMed]
  4. A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006). [CrossRef] [PubMed]
  5. T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012). [CrossRef] [PubMed]
  6. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010). [CrossRef] [PubMed]
  7. R. Ferguson, D. Hammer, A. Elsner, R. Webb, S. Burns, and J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express12(21), 5198–5208 (2004). [CrossRef] [PubMed]
  8. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011). [CrossRef] [PubMed]
  9. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  10. S. Makita, F. Jaillon, M. Yamanari, and Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express20(3), 2681–2692 (2012). [CrossRef] [PubMed]
  11. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  12. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  13. M. Hogan, J. Alvarado, and J. Weddell, in Histology of the Human Eye (W.B. Saunders, Philadelphia, 1971), pp. 523–606.
  14. D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009). [CrossRef] [PubMed]
  15. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996). [CrossRef] [PubMed]
  16. A. Elsner, M. Miura, S. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. Walker, G. Wing, P. Raskauskas, D. Fletcher, Q. Zhou, and A. Dreher, “Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration,” Opt. Express7(2), 95–106 (2000). [CrossRef] [PubMed]
  17. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010). [CrossRef] [PubMed]
  18. A. E. Elsner, A. Weber, M. C. Cheney, D. A. VanNasdale, and M. Miura, “Imaging polarimetry in patients with neovascular age-related macular degeneration,” J. Opt. Soc. Am. A24(5), 1468–1480 (2007). [CrossRef] [PubMed]
  19. American National Standard Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007 (ANSI, New York, 2007).
  20. Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express3(7), 1647–1661 (2012). [CrossRef] [PubMed]
  21. S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003). [CrossRef] [PubMed]
  22. A. Weber, M. Cheney, Q. Smithwick, and A. Elsner, “Polarimetric imaging and blood vessel quantification,” Opt. Express12(21), 5178–5190 (2004). [CrossRef] [PubMed]
  23. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  24. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005). [CrossRef] [PubMed]
  25. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  26. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006). [CrossRef] [PubMed]
  27. P. Henkind, “Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative,” Br. J. Ophthalmol.51(2), 115–123 (1967). [CrossRef] [PubMed]
  28. M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. The large vessels,” J. Ultrastruct. Res.9(1-2), 10–28 (1963). [CrossRef] [PubMed]
  29. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express16(17), 12746–12756 (2008). [CrossRef] [PubMed]
  30. A. T. Phan, A. Elsner, T. Y. Chui, D. VanNasdale, C. A. Clark, V. E. Malinovsky, and S. A. Burns, “In vivo microvascular changes in diabetic patients without clinically severe diabetic retinopathy,” presented at the 2012 ARVO Annual Meeting—Association for Research in Vision and Ophthalmology, Fort Lauderdale, FL, 5–10 May 2012.
  31. O. Y. Tektas, E. Lütjen-Drecoll, and M. Scholz, “Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG,” Invest. Ophthalmol. Vis. Sci.51(10), 5083–5091 (2010). [CrossRef] [PubMed]
  32. A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80(6), 696–702 (1968). [CrossRef] [PubMed]
  33. H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3802 KB)     
» Media 2: AVI (3802 KB)     
» Media 3: AVI (3802 KB)     
» Media 4: AVI (3625 KB)     
» Media 5: AVI (3960 KB)     
» Media 6: AVI (3986 KB)     
» Media 7: AVI (3802 KB)     
» Media 8: AVI (3625 KB)     
» Media 9: AVI (3986 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited