OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2579–2586

Phase-sensitive OCT imaging of multiple nanoparticle species using spectrally multiplexed single pulse photothermal excitation

Sanghoon Kim, Matthew T. Rinehart, Hansang Park, Yizheng Zhu, and Adam Wax  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2579-2586 (2012)
http://dx.doi.org/10.1364/BOE.3.002579


View Full Text Article

Enhanced HTML    Acrobat PDF (2019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply phase-sensitive optical coherence tomography to image multiple nanoparticle species with two excitation wavelengths matched to their distinct absorption peaks. Using different modulation frequencies, multiple species collocated within the sample can be distinguished. In addition, we characterize single-pulse excitation schemes as a method to minimize bulk heating of the sample. We demonstrate this new scheme with B-mode photothermal measurements of tissue phantoms.

© 2012 OSA

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(160.4236) Materials : Nanomaterials

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: June 18, 2012
Revised Manuscript: September 2, 2012
Manuscript Accepted: September 13, 2012
Published: September 17, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Citation
Sanghoon Kim, Matthew T. Rinehart, Hansang Park, Yizheng Zhu, and Adam Wax, "Phase-sensitive OCT imaging of multiple nanoparticle species using spectrally multiplexed single pulse photothermal excitation," Biomed. Opt. Express 3, 2579-2586 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2579


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996). [CrossRef]
  3. R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by Dual-Wavelength Photothermal (DWP) OCT,” Opt. Express19(24), 23831–23844 (2011). [CrossRef] [PubMed]
  4. R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express2(3), 491–504 (2011). [CrossRef] [PubMed]
  5. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011). [CrossRef]
  6. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express1(1), 310–317 (2010). [CrossRef] [PubMed]
  7. N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010). [CrossRef]
  8. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett.29(14), 1647–1649 (2004). [CrossRef] [PubMed]
  9. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett.28(17), 1546–1548 (2003). [CrossRef] [PubMed]
  10. E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008). [CrossRef] [PubMed]
  11. M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).
  12. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  13. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998). [CrossRef]
  14. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004). [PubMed]
  15. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  16. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express14(15), 6724–6738 (2006). [CrossRef] [PubMed]
  17. A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010). [CrossRef] [PubMed]
  18. T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012). [CrossRef] [PubMed]
  19. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited