OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2623–2635

In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy

Jian Gao, Joseph A. Lyon, Daniel P. Szeto, and Jun Chen  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2623-2635 (2012)
http://dx.doi.org/10.1364/BOE.3.002623


View Full Text Article

Enhanced HTML    Acrobat PDF (5550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital holographic microscopy (DHM) has been applied extensively to in vitro studies of different living cells. In this paper, we present a novel application of an off-axis DHM system to in vivo study of the development of zebrafish embryos. Even with low magnification microscope objectives, the morphological structures and individual cell types inside developing zebrafish embryos can be clearly observed from reconstructed amplitude images. We further study the dynamic process of blood flow in zebrafish embryos. A calibration routine and post-processing procedures are developed to quantify physiological parameters at different developmental stages. We measure quantitatively the blood flow as well as the heart rate to study the effects of elevated D-glucose (abnormal condition) on circulatory and cardiovascular systems of zebrafish embryos. To enhance our ability to use DHM as a quantitative tool for potential high throughput screening application, the calibration and post-processing algorithms are incorporated into an automated processing software. Our results show that DHM is an excellent non-invasive imaging technique for visualizing the cellular dynamics of organogenesis of zebrafish embryos in vivo.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography

ToC Category:
Microscopy

History
Original Manuscript: June 12, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 14, 2012
Published: September 20, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Citation
Jian Gao, Joseph A. Lyon, Daniel P. Szeto, and Jun Chen, "In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy," Biomed. Opt. Express 3, 2623-2635 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Y. Stainier and M. C. Fishman, “The zebrafish as a model system to study cardiovascular development,” Trends. Cardiovas. Med.4, 207 – 212 (1994). [CrossRef]
  2. Z. Lele and P. Krone, “The zebrafish as a model system in developmental, toxicological and transgenic research,” Biotechnol. Adv.14, 57 – 72 (1996). [CrossRef] [PubMed]
  3. D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003). [CrossRef]
  4. A. S. Glass and R. Dahm, “The zebrafish as a model organism for eye development.” Ophthalmic. Res.36, 4–24 (2004). [CrossRef] [PubMed]
  5. K. Dooley and L. I. Zon, “Zebrafish: a model system for the study of human disease,” Curr. Opin. Genet. Dev.10, 252 – 256 (2000). [CrossRef] [PubMed]
  6. J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002). [CrossRef] [PubMed]
  7. J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” Brit. J. Haematol.123, 568–576 (2003). [CrossRef]
  8. G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8, 353–367 (2007). [CrossRef] [PubMed]
  9. S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011). [CrossRef]
  10. L. Jing and L. I. Zon, “Zebrafish as a model for normal and malignant hematopoiesis,” Dis. Model Mech.4, 433–438 (2011). [CrossRef] [PubMed]
  11. M. S. Cooper, L. A. D’Amico, and C. A. Henry, “Confocal microscopic analysis of morphogenetic movements,” Method Cell Biol.59, 179–204 (1999). [CrossRef]
  12. P. Jayachandran, E. Hong, and R. Brewster, “Labeling and imaging cells in the zebrafish hindbrain,” J. Vis. Exp.41, e1976 (2010).
  13. M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010). [CrossRef]
  14. P. Kettunen, “Calcium imaging in the zebrafish,” Method Cell Biol.740, 1039–1071 (2012).
  15. C. A. Combs, Fluorescence Microscopy: A Concise Guide to Current Imaging Methods (John Wiley and Sons, Inc., 2010).
  16. M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, “Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates,” Annu. Rev. Biomed. Eng.13, 185–217 (2011). [CrossRef] [PubMed]
  17. G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012). [CrossRef]
  18. C. Mann, L. Yu, and M. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online5, 21 (2006). [CrossRef] [PubMed]
  19. C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).
  20. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38, 6994–7001 (1999). [CrossRef]
  21. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003). [CrossRef] [PubMed]
  22. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14, 4300–4306 (2006). [CrossRef] [PubMed]
  23. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt.40, 5046–5051 (2001). [CrossRef]
  24. G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004). [CrossRef]
  25. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13, 8693–8698 (2005). [CrossRef] [PubMed]
  26. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express14, 7005–7013 (2006). [CrossRef] [PubMed]
  27. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006). [CrossRef]
  28. M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008). [CrossRef]
  29. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009). [CrossRef]
  30. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express17, 12031–12038 (2009). [CrossRef] [PubMed]
  31. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13, 9361–9373 (2005). [CrossRef] [PubMed]
  32. M. Antkowiak, M. L. Torres-Mapa, K. Dholakia, and F. J. Gunn-Moore, “Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation,” Biomed. Opt. Express1, 414–424 (2010). [CrossRef]
  33. S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011). [CrossRef]
  34. M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express3, 313–326 (2012). [CrossRef] [PubMed]
  35. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  36. Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt.50, B25–B30 (2011). [CrossRef] [PubMed]
  37. J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010). [CrossRef]
  38. D. Gabor, “A new microscopic principle,” Nature161, 777–778 (1948). [CrossRef] [PubMed]
  39. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  40. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  41. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010). [CrossRef]
  42. T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE, 3098, 224–233 (1997). [CrossRef]
  43. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39, 4070–4075 (2000). [CrossRef]
  44. F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6, 81–91 (1985). [CrossRef] [PubMed]
  45. M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2302 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited