OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2636–2646

In situ structural and microangiographic assessment of human skin lesions with high-speed OCT

Cedric Blatter, Jessika Weingast, Aneesh Alex, Branislav Grajciar, Wolfgang Wieser, Wolfgang Drexler, Robert Huber, and Rainer A. Leitgeb  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2636-2646 (2012)
http://dx.doi.org/10.1364/BOE.3.002636


View Full Text Article

Enhanced HTML    Acrobat PDF (2590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate noninvasive structural and microvascular contrast imaging of different human skin diseases in vivo using an intensity difference analysis of OCT tomograms. The high-speed swept source OCT system operates at 1310 nm with 220 kHz A-scan rate. It provides an extended focus by employing a Bessel beam. The studied lesions were two cases of dermatitis and two cases of basal cell carcinoma. The lesions show characteristic vascular patterns that are significantly different from healthy skin. In case of inflammation, vessels are dilated and perfusion is increased. In case of basal cell carcinoma, the angiogram shows a denser network of unorganized vessels with large vessels close to the skin surface. Those results indicate that assessing vascular changes yields complementary information with important insight into the metabolic demand.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.2490) Remote sensing and sensors : Flow diagnostics
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: July 3, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: September 11, 2012
Published: September 24, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Citation
Cedric Blatter, Jessika Weingast, Aneesh Alex, Branislav Grajciar, Wolfgang Wieser, Wolfgang Drexler, Robert Huber, and Rainer A. Leitgeb, "In situ structural and microangiographic assessment of human skin lesions with high-speed OCT," Biomed. Opt. Express 3, 2636-2646 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009). [CrossRef] [PubMed]
  2. T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011). [CrossRef] [PubMed]
  3. R. A. Leitgeb, “Current technologies for high speed and functional imaging with optical coherence tomography,” in Advances in Imaging and Electron Physics, Volume 168: Optics of Charged Particle Analyzers, P. W. Hawkes, ed. (Elsevier, 2011), Chap. 3.
  4. Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001). [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  6. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000). [CrossRef] [PubMed]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  8. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  9. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  11. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012). [CrossRef] [PubMed]
  12. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011). [CrossRef] [PubMed]
  13. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  14. J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011). [CrossRef] [PubMed]
  15. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006). [CrossRef] [PubMed]
  16. A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010). [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  18. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19(13), 12141–12155 (2011). [CrossRef] [PubMed]
  19. A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002). [CrossRef] [PubMed]
  20. E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001). [CrossRef] [PubMed]
  21. A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011). [CrossRef]
  22. D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).
  23. J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res.295(2), 50–55 (2003). [CrossRef] [PubMed]
  24. T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007). [CrossRef] [PubMed]
  25. J. M. Olmedo, K. E. Warschaw, J. M. Schmitt, and D. L. Swanson, “Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study,” J. Am. Acad. Dermatol.55(3), 408–412 (2006). [CrossRef] [PubMed]
  26. K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012). [CrossRef] [PubMed]
  27. J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res.60(14), 3683–3688 (2000). [PubMed]
  28. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  29. T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1513 KB)      QuickTime
» Media 2: AVI (3613 KB)      QuickTime
» Media 3: AVI (1535 KB)      QuickTime
» Media 4: AVI (4679 KB)      QuickTime
» Media 5: AVI (1798 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited