OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2658–2668

Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher

Nicola Bellini, Francesca Bragheri, Ilaria Cristiani, Jochen Guck, Roberto Osellame, and Graeme Whyte  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2658-2668 (2012)
http://dx.doi.org/10.1364/BOE.3.002658


View Full Text Article

Enhanced HTML    Acrobat PDF (2505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The combination of high power laser beams with microfluidic delivery of cells is at the heart of high-throughput, single-cell analysis and disease diagnosis with an optical stretcher. So far, the challenges arising from this combination have been addressed by externally aligning optical fibres with microfluidic glass capillaries, which has a limited potential for integration into lab-on-a-chip environments. Here we demonstrate the successful production and use of a monolithic glass chip for optical stretching of white blood cells, featuring microfluidic channels and optical waveguides directly written into bulk glass by femtosecond laser pulses. The performance of this novel chip is compared to the standard capillary configuration. The robustness, durability and potential for intricate flow patterns provided by this monolithic optical stretcher chip suggest its use for future diagnostic and biotechnological applications.

© 2012 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: July 5, 2012
Revised Manuscript: August 31, 2012
Manuscript Accepted: September 3, 2012
Published: September 24, 2012

Citation
Nicola Bellini, Francesca Bragheri, Ilaria Cristiani, Jochen Guck, Roberto Osellame, and Graeme Whyte, "Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher," Biomed. Opt. Express 3, 2658-2668 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. de Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011). [CrossRef]
  2. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001). [CrossRef] [PubMed]
  3. M. Radmacher, “Measuring the elastic properties of living cells by the atomic force microscope,” Methods Cell Biol.68, 67–90 (2002). [CrossRef] [PubMed]
  4. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Mater.55(12), 3989–4014 (2007). [CrossRef]
  5. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005). [CrossRef] [PubMed]
  6. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007). [CrossRef] [PubMed]
  7. F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009). [CrossRef] [PubMed]
  8. J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010). [CrossRef] [PubMed]
  9. T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009). [CrossRef] [PubMed]
  10. C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008). [CrossRef]
  11. F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005). [CrossRef] [PubMed]
  12. K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis25(21–22), 3498–3512 (2004). [CrossRef] [PubMed]
  13. A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007). [CrossRef]
  14. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009). [CrossRef] [PubMed]
  15. K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011). [CrossRef]
  16. Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012). [CrossRef] [PubMed]
  17. N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010). [CrossRef] [PubMed]
  18. F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010). [CrossRef] [PubMed]
  19. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007). [CrossRef]
  20. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  21. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009). [CrossRef]
  22. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001). [CrossRef] [PubMed]
  23. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17(10), 8685–8695 (2009). [CrossRef] [PubMed]
  24. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011). [CrossRef]
  25. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011). [CrossRef] [PubMed]
  26. F. He, Y. Cheng, Z. Xu, Y. Liao, J. Xu, H. Sun, C. Wang, Z. Zhou, K. Sugioka, K. Midorikawa, Y. Xu, and X. Chen, “Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser,” Opt. Lett.35(3), 282–284 (2010). [CrossRef] [PubMed]
  27. F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011). [CrossRef]
  28. M. J. Madou, Fundamentals of Microfabrication: the Science of Miniaturization (CRC Press, Boca Raton, FL, 2002).
  29. E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985). [CrossRef]
  30. K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012). [CrossRef] [PubMed]
  31. L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A26(8), 1814–1826 (2009). [CrossRef] [PubMed]
  32. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000). [CrossRef] [PubMed]
  33. L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory,” Appl. Opt. (to be published). [PubMed]
  34. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011). [CrossRef]
  35. F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited