OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2700–2706

In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography

Melissa M. Eberle, Carissa L. Reynolds, Jenny I. Szu, Yan Wang, Anne M. Hansen, Mike S. Hsu, M. Shahidul Islam, Devin K. Binder, and B. Hyle Park  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 11, pp. 2700-2706 (2012)
http://dx.doi.org/10.1364/BOE.3.002700


View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The most common technology for seizure detection is with electroencephalography (EEG), which has low spatial resolution and minimal depth discrimination. Optical techniques using near-infrared (NIR) light have been used to improve upon EEG technology and previous research has suggested that optical changes, specifically changes in near-infrared optical scattering, may precede EEG seizure onset in in vivo models. Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth resolved cross-sectional images. In this study, OCT was used to detect changes in optical properties of cortical tissue in vivo in mice before and during the induction of generalized seizure activity. We demonstrated that a significant decrease (P < 0.001) in backscattered intensity during seizure progression can be detected before the onset of observable manifestations of generalized (stage-5) seizures. These results indicate the feasibility of minimally-invasive optical detection of seizures with OCT.

© 2012 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: July 3, 2012
Revised Manuscript: September 18, 2012
Manuscript Accepted: September 26, 2012
Published: October 2, 2012

Citation
Melissa M. Eberle, Carissa L. Reynolds, Jenny I. Szu, Yan Wang, Anne M. Hansen, Mike S. Hsu, M. Shahidul Islam, Devin K. Binder, and B. Hyle Park, "In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography," Biomed. Opt. Express 3, 2700-2706 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-11-2700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011). [CrossRef] [PubMed]
  2. R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p . [CrossRef] [PubMed]
  3. W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011). [CrossRef] [PubMed]
  4. L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011). [CrossRef]
  5. J. R. Weber, M. S. Hsu, A. Lin, D. Lee, C. Owen, D. K. Binder, D. J. Cuccia, W. R. Johnson, G. Bearman, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of seizure using multispectral spatial frequency domain imaging,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD110p.
  6. D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004). [CrossRef] [PubMed]
  7. K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).
  8. K. Holthoff and O. W. Witte, “Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution,” Brain Res. Bull.47(6), 649–655 (1998). [CrossRef] [PubMed]
  9. A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011). [CrossRef] [PubMed]
  10. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999). [CrossRef]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  12. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004). [PubMed]
  13. M. Sato, D. Nomura, T. Tsunenari, and I. Nishidate, “In vivo rat brain measurements of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography,” Appl. Opt.49(30), 5686–5696 (2010). [CrossRef] [PubMed]
  14. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006). [CrossRef] [PubMed]
  15. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009). [CrossRef] [PubMed]
  16. U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett.32(17), 2614–2616 (2007). [CrossRef] [PubMed]
  17. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  18. D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004). [CrossRef] [PubMed]
  19. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003). [CrossRef] [PubMed]
  20. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  21. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  22. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004). [CrossRef] [PubMed]
  23. Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express20(14), 14797–14813 (2012). [CrossRef] [PubMed]
  24. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003). [CrossRef] [PubMed]
  25. K. K. Akula, A. Dhir, and S. K. Kulkarni, “Effect of various antiepileptic drugs in a pentylenetetrazol-induced seizure model in mice,” Methods Find. Exp. Clin. Pharmacol.31(7), 423–432 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited