OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2733–2751

Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

Ireneusz Grulkowski, Jonathan J. Liu, Benjamin Potsaid, Vijaysekhar Jayaraman, Chen D. Lu, James Jiang, Alex E. Cable, Jay S. Duker, and James G. Fujimoto  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 2733-2751 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50–580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into one instrument. The operating modes of the device include: ultrahigh speed, high resolution retinal imaging (up to 580 kHz); high speed, long depth range anterior segment imaging (100 kHz) and ultralong range full eye imaging (50 kHz). High speed imaging enables wide-field retinal scanning, while increased light penetration at 1060 nm enables visualization of choroidal vasculature. Comprehensive volumetric data sets of the anterior segment from the cornea to posterior crystalline lens surface are also shown. The adjustable VCSEL sweep range and rate make it possible to achieve an extremely long imaging depth range of ~50 mm, and to demonstrate the first in vivo 3D OCT imaging spanning the entire eye for non-contact measurement of intraocular distances including axial eye length. Swept source OCT with VCSEL technology may be attractive for next generation integrated ophthalmic OCT instruments.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.3600) Lasers and laser optics : Lasers, tunable
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Optical Coherence Tomography

Original Manuscript: July 20, 2012
Revised Manuscript: October 1, 2012
Manuscript Accepted: October 1, 2012
Published: October 3, 2012

Ireneusz Grulkowski, Jonathan J. Liu, Benjamin Potsaid, Vijaysekhar Jayaraman, Chen D. Lu, James Jiang, Alex E. Cable, Jay S. Duker, and James G. Fujimoto, "Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers," Biomed. Opt. Express 3, 2733-2751 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. Schuman, C. A. Puliafito, and J. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Inc., Thorofare, 2004), pp. 1–250.
  3. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009). [CrossRef] [PubMed]
  4. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011). [CrossRef] [PubMed]
  5. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994). [CrossRef] [PubMed]
  6. M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010). [CrossRef] [PubMed]
  7. D. Huang, J. S. Duker, J. G. Fujimoto, B. Lumbroso, J. S. Schuman, and R. N. Weinreb, Imaging the Eye from Front to Back with RTVue Fourier-Domain Optical Coherence Tomography (Slack Inc., Thorofare, 2010), pp. 1–268.
  8. B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006). [CrossRef] [PubMed]
  9. M. L. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010). [CrossRef] [PubMed]
  10. C. K. S. Leung and R. N. Weinreb, “Anterior chamber angle imaging with optical coherence tomography,” Eye (Lond.)25(3), 261–267 (2011). [CrossRef] [PubMed]
  11. J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002). [CrossRef] [PubMed]
  12. A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett.13(3), 186–188 (1988). [CrossRef] [PubMed]
  13. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  14. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  15. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  16. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  17. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  18. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  19. B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, Berlin, 2008), pp. 209–237.
  20. R. I. MacDonald, “Frequency domain optical reflectometer,” Appl. Opt.20(10), 1840–1844 (1981). [CrossRef] [PubMed]
  21. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008). [CrossRef] [PubMed]
  22. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  23. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003). [CrossRef] [PubMed]
  24. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004). [CrossRef] [PubMed]
  25. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005). [CrossRef] [PubMed]
  26. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  27. B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009). [CrossRef] [PubMed]
  28. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  29. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  30. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  31. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008). [CrossRef]
  32. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011). [CrossRef]
  33. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007). [CrossRef]
  34. K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys.47(1), 1–10 (2008). [CrossRef]
  35. J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011). [CrossRef]
  36. K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012). [CrossRef]
  37. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range,” in Conference on Lasers and Electro-Optics, Technical Digest (CD), (Optical Society of America, 2011), paper PDPB2.
  38. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012). [CrossRef]
  39. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997). [CrossRef] [PubMed]
  40. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express13(26), 10652–10664 (2005). [CrossRef] [PubMed]
  41. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  42. Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012). [CrossRef]
  43. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  44. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19(21), 20930–20939 (2011). [CrossRef] [PubMed]
  45. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005). [CrossRef] [PubMed]
  46. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  47. K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE7554, 75542Q, 75542Q-5 (2010). [CrossRef]
  48. K. Totsuka, K. Isamoto, T. Sakai, T. Suzuki, A. Morosawa, and C. Chong, “140 kHz optical coherece tomography imaging by MEMS scanner based swept source laser,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2010), paper BTuD108p.
  49. ANSI, American National Standard for Safe Use of Lasers, ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007), pp. 1–249.
  50. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009). [CrossRef] [PubMed]
  51. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2598 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited