OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2761–2770

Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations

Hadi Zabihi Yeganeh, Vladislav Toronov, Jonathan T. Elliott, Mamadou Diop, Ting-Yim Lee, and Keith St. Lawrence  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 2761-2770 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a broad-band, continuous-wave spectral approach to quantify the baseline optical properties of tissue and changes in the concentration of a chromophore, which can assist to quantify the regional blood flow from dynamic contrast-enhanced near-infrared spectroscopy data. Experiments were conducted on phantoms and piglets. The baseline optical properties of tissue were determined by a multi-parameter wavelength-dependent data fit of a photon diffusion equation solution for a homogeneous medium. These baseline optical properties were used to find the changes in Indocyanine green concentration time course in the tissue. The changes were obtained by fitting the dynamic data at the peak wavelength of the chromophore absorption, which were used later to estimate the cerebral blood flow using a bolus tracking method.

© 2012 OSA

OCIS Codes
(290.1990) Scattering : Diffusion
(290.5820) Scattering : Scattering measurements
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: June 18, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 27, 2012
Published: October 9, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Hadi Zabihi Yeganeh, Vladislav Toronov, Jonathan T. Elliott, Mamadou Diop, Ting-Yim Lee, and Keith St. Lawrence, "Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations," Biomed. Opt. Express 3, 2761-2770 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Marin and J. Moore, “Understanding near-infrared spectroscopy,” Adv. Neonatal Care11(6), 382–388 (2011). [PubMed]
  2. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976). [PubMed]
  3. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004). [CrossRef] [PubMed]
  4. R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol.47(2), 193–208 (2002). [CrossRef] [PubMed]
  5. O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt.49(32), 6324–6332 (2010). [CrossRef] [PubMed]
  6. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994). [CrossRef] [PubMed]
  7. D. G. Nabavi, R. Dittrich, S. P. Kloska, E. M. Nam, E. Klotz, W. Heindel, and E. B. Ringelstein, “Window narrowing: a new method for standardized assessment of the tissue at risk-maximum of infarction in CT based brain perfusion maps,” Neurol. Res.29(3), 296–303 (2007). [CrossRef] [PubMed]
  8. M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum.80(5), 054302 (2009). [CrossRef] [PubMed]
  9. S. Chandrasekhar, Radiative Transfer (Oxford University Press, New York, 1960).
  10. V. V. Sobolev and A. Treatise, Radiative Transfer (Van Nostrand-Reinhold, Prinston, NJ, 1963).
  11. K. M. Case and P. Z. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, MA, 1967).
  12. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York 1978).
  13. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite geometry boundary problem for light migration in highly scasttering media: a frequency domain study in the diffusion approximation,” J. Opt. Soc. Am.11(10), 2128–2138 (1994). [CrossRef]
  14. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  15. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997). [CrossRef] [PubMed]
  16. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. S. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  17. J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010). [CrossRef] [PubMed]
  18. D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T.-Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002). [CrossRef] [PubMed]
  19. J. T. Elliott, M. Diop, T. Y. Lee, and K. S. Lawrence, “Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters,” Opt. Lett.37(13), 2571–2573 (2012). [CrossRef] [PubMed]
  20. H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol.59(708), 1209–1218 (1986). [CrossRef] [PubMed]
  21. B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Baruah, M. Beeri, V. Hartounian, M. Shaul, I. Rosenberg, A. M. Troen, and S. Fantini, “Absolute optical measurements of cerebral optical coefficients and hemoglobin concentrations in aging and younger human subjects,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BTu3A.61.
  22. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999). [CrossRef] [PubMed]
  23. A. A. Konstas, G. V. Goldmakher, T. Y. Lee, and M. H. Lev, “Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis,” AJNR Am. J. Neuroradiol.30(4), 662–668 (2009). [CrossRef] [PubMed]
  24. A. A. Konstas, G. V. Goldmakher, T. Y. Lee, and M. H. Lev, “Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations,” AJNR Am. J. Neuroradiol.30(5), 885–892 (2009). [CrossRef] [PubMed]
  25. R. Springett, Y. Sakata, and D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol.46(8), 2209–2225 (2001). [CrossRef] [PubMed]
  26. M. Wintermark, M. Sesay, E. Barbier, K. Borbély, W. P. Dillon, J. D. Eastwood, T. C. Glenn, C. B. Grandin, S. Pedraza, J. F. Soustiel, T. Nariai, G. Zaharchuk, J. M. Caillé, V. Dousset, and H. Yonas, “Comparative overview of brain perfusion imaging techniques,” Stroke36(9), e83–e99 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited