OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2784–2793

Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device

Benjamin R. Watts, Zhiyi Zhang, Chang-Qing Xu, Xudong Cao, and Min Lin  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 2784-2793 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1498 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optofluidic device is demonstrated with photonic components integrated onto the chip for use in fluorescence and scatter detection and counting applications. The device is fabricated by integrating the optical and fluidic components in a single functional layer. Optical excitation on-chip is accomplished via a waveguide integrated with a system of lenses that reforms the geometry of the beam in the microfluidic channel into a specific shape that is more suitable for reliable detection. Separate counting tests by detecting fluorescence and scattered signals from 2.5 and 6.0 μm beads were performed and found to show detection reliability comparable to that of conventional means of excitation and an improvement over other microchip-based designs.

© 2012 OSA

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(130.3120) Integrated optics : Integrated optics devices
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.3990) Optical devices : Micro-optical devices
(300.2530) Spectroscopy : Fluorescence, laser-induced
(130.5460) Integrated optics : Polymer waveguides

ToC Category:

Original Manuscript: April 30, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 13, 2012
Published: October 10, 2012

Benjamin R. Watts, Zhiyi Zhang, Chang-Qing Xu, Xudong Cao, and Min Lin, "Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device," Biomed. Opt. Express 3, 2784-2793 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012). [CrossRef] [PubMed]
  2. H. Jiang, X. Weng, and D. Q. Li, “Microfluidic whole-blood immunoassays,” Microfluid. Nanofluid.10(5), 941–964 (2011). [CrossRef]
  3. D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom.15(4), 319–328 (2010). [CrossRef]
  4. R. N. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annu. Rev. Biomed. Eng.12(1), 187–201 (2010). [CrossRef] [PubMed]
  5. W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010). [CrossRef] [PubMed]
  6. H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010). [CrossRef] [PubMed]
  7. M. Ikeda, N. Yamaguchi, and M. Nasu, “Rapid on-chip flow cytometric detection of Listeria monocytogenes in milk,” J. Health Sci.55(5), 851–856 (2009). [CrossRef]
  8. S. K. Hsiung, S. R. Lin, and C. H. Lin, “Micro flow cytometry chip device integrated with tunable microlens for ciculating tumor cells detection and counting applications,” Jpn. J. Appl. Phys.49(6), 060218 (2010). [CrossRef]
  9. M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011). [CrossRef] [PubMed]
  10. T. D. Chung and H. C. Kim, “Recent advances in miniaturized microfluidic flow cytometry for clinical use,” Electrophoresis28(24), 4511–4520 (2007). [CrossRef] [PubMed]
  11. D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005). [CrossRef] [PubMed]
  12. B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012). [CrossRef]
  13. B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010). [CrossRef] [PubMed]
  14. Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011). [CrossRef] [PubMed]
  15. C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007). [CrossRef]
  16. V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005). [CrossRef]
  17. J. Godin and Y.-H. Lo, “Two-parameter angular light scatter collection for microfluidic flow cytometry by unique waveguide structures,” Biomed. Opt. Express1(5), 1472–1479 (2010). [CrossRef] [PubMed]
  18. M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011). [CrossRef] [PubMed]
  19. M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011). [CrossRef]
  20. D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011). [CrossRef] [PubMed]
  21. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006). [CrossRef] [PubMed]
  22. T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010). [CrossRef]
  23. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009). [CrossRef] [PubMed]
  24. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011). [CrossRef] [PubMed]
  25. A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009). [CrossRef] [PubMed]
  26. P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008). [CrossRef] [PubMed]
  27. C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).
  28. X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009). [CrossRef] [PubMed]
  29. H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011). [CrossRef]
  30. Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004). [CrossRef] [PubMed]
  31. M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001). [CrossRef] [PubMed]
  32. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011). [CrossRef]
  33. A. Cytometry, “VenturiOne cell cycle analysis,” Application Note, http://www.appliedcytometry.com/pdfs/VenturiOne_DNA_Cell_Cycle_Application_Note_low_res.pdf .
  34. H. T. Chen and Y. N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid. Nanofluid.6(4), 529–537 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited