OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2794–2808

Self-calibrated algorithms for diffuse optical tomography and bioluminescence tomography using relative transmission images

Mohamed A. Naser, Michael S. Patterson, and John W. Wong  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 2794-2808 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reconstruction algorithms for diffuse optical tomography (DOT) and bioluminescence tomography (BLT) have been developed based on diffusion theory. The algorithms numerically solve the diffusion equation using the finite element method. The direct measurements of the uncalibrated light fluence rates by a camera are used for the reconstructions. The DOT is self-calibrated by using all possible pairs of transmission images obtained with external sources along with the relative values of the simulated data and the calculated Jacobian. The reconstruction is done in the relative domain with the cancelation of any geometrical or optical factors. The transmission measurements for the DOT are used for calibrating the bioluminescence measurements at each wavelength and then a normalized system of equations is built up which is self-calibrated for the BLT. The algorithms have been applied to a three dimensional model of the mouse (MOBY) segmented into tissue regions which are assumed to have uniform optical properties. The DOT uses the direct method for calculating the Jacobian. The BLT uses a reduced space of eigenvectors of the Green's function with iterative shrinking of the permissible source region. The reconstruction results of the DOT and BLT algorithms show good agreement with the actual values when using either absolute or relative data. Even a small calibration error causes significant degradation of the reconstructions based on absolute data.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: July 13, 2012
Revised Manuscript: October 3, 2012
Manuscript Accepted: October 9, 2012
Published: October 11, 2012

Mohamed A. Naser, Michael S. Patterson, and John W. Wong, "Self-calibrated algorithms for diffuse optical tomography and bioluminescence tomography using relative transmission images," Biomed. Opt. Express 3, 2794-2808 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology219(2), 316–333 (2001). [PubMed]
  3. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov.7(7), 591–607 (2008). [CrossRef] [PubMed]
  4. J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag.27(5), 48–57 (2008). [CrossRef] [PubMed]
  5. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005). [CrossRef] [PubMed]
  6. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol.53(14), 3921–3942 (2008). [CrossRef] [PubMed]
  7. D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantification of bioluminescence images of point source objects using diffusion theory models,” Phys. Med. Biol.51(15), 3733–3746 (2006). [CrossRef] [PubMed]
  8. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt.12(2), 024007 (2007). [CrossRef] [PubMed]
  9. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett.31(3), 365–367 (2006). [CrossRef] [PubMed]
  10. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express13(18), 6756–6771 (2005). [CrossRef] [PubMed]
  11. X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging2010, 12 (2010). [CrossRef] [PubMed]
  12. H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys.229(13), 5246–5256 (2010). [CrossRef]
  13. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express16(20), 15640–15654 (2008). [CrossRef] [PubMed]
  14. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express17(10), 8062–8080 (2009). [CrossRef] [PubMed]
  15. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt.46(10), 1679–1685 (2007). [CrossRef] [PubMed]
  16. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express15(21), 13695–13708 (2007). [CrossRef] [PubMed]
  17. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express12(17), 3996–4000 (2004). [CrossRef] [PubMed]
  18. N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys.33(1), 61–68 (2006). [CrossRef] [PubMed]
  19. X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express18(19), 19876–19893 (2010). [CrossRef] [PubMed]
  20. A. Kienle and F. Foschum, “250 years Lambert surface: does it really exist?” Opt. Express19(5), 3881–3889 (2011). [CrossRef] [PubMed]
  21. J. Pekar, “Multispectral bioluminescence tomography with x-ray CT spatial priors” Ph.D. thesis (McMaster University, Hamilton, 2011), Open Access Dissertations and Theses, Paper 4329, http://digitalcommons.mcmaster.ca/opendissertations/4329 .
  22. M. A. J. Chaudhari, A. A. Joshi, F. Darvas, and R. M. Leahy, “A method for atlas-based volumetric registration with surface constraints for optical bioluminescence tomography in small animal imaging,” Proc. SPIE6510, 651024, 651024–10 (2007). [CrossRef]
  23. H. Dehghani, B. W. Pogue, S. C. Davis, and M. S. Patterson, “Modeling and image reconstruction in spectrally resolved bioluminescence tomography,” Proc. SPIE6434, 64340V, 64340V–9 (2007). [CrossRef]
  24. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  25. M. A. Naser and M. S. Patterson, “Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties,” Biomed. Opt. Express1(2), 512–526 (2010). [CrossRef] [PubMed]
  26. M. A. Naser and M. S. Patterson, “Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region,” Biomed. Opt. Express2(1), 169–184 (2011). [CrossRef] [PubMed]
  27. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  28. A. D. Klose, “Transport-theory-based stochastic image reconstruction of bioluminescence sources,” J. Opt. Soc. Am. A24(6), 1601–1608 (2007). [CrossRef]
  29. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  30. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993). [CrossRef] [PubMed]
  31. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  32. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt.37(22), 5337–5343 (1998). [CrossRef] [PubMed]
  33. M. A. Naser and M. S. Patterson, “Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region,” Biomed. Opt. Express2(11), 3179–3193 (2011). [CrossRef] [PubMed]
  34. W. P. Segars, B. M. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol.6(3), 149–159 (2004). [CrossRef] [PubMed]
  35. A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt.48(10), D151–D162 (2009). [CrossRef] [PubMed]
  36. Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro,2009. ISBI '09 (IEEE, 2009), pp. 1142–1145.
  37. S. A. Prahl, “Optical properties spectra,” (Oregon Medical Laser Clinic, 2001), http://omlc.ogi.edu/spectra/index.html .
  38. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt.46(22), 4896–4906 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited