OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2937–2949

Selective detection of bacterial layers with terahertz plasmonic antennas

Audrey Berrier, Martijn C. Schaafsma, Guillaume Nonglaton, Jonas Bergquist, and Jaime Gómez Rivas  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 2937-2949 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3897 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate but complex and time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

© 2012 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(250.5403) Optoelectronics : Plasmonics
(310.6188) Thin films : Spectral properties
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: August 28, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 11, 2012
Published: October 23, 2012

Audrey Berrier, Martijn C. Schaafsma, Guillaume Nonglaton, Jonas Bergquist, and Jaime Gómez Rivas, "Selective detection of bacterial layers with terahertz plasmonic antennas," Biomed. Opt. Express 3, 2937-2949 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Madigan, J. Martinko, D. Stahl, and D. Clark, Biology of Microorganisms, 13th ed. (Ed. Pearson, 2012).
  2. P. Demchick and A. L. Koch, “The permeability of the wall fabric of Escherichia coli and Bacillus subtilis,” J. Bacteriol.178(3), 768–773 (1996). [PubMed]
  3. S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc.40(3), 277–288 (2009). [CrossRef]
  4. O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron.22(7), 1205–1217 (2007). [CrossRef] [PubMed]
  5. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999). [CrossRef]
  6. L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011). [CrossRef] [PubMed]
  7. A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005). [CrossRef]
  8. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20(5), 5344–5355 (2012). [CrossRef] [PubMed]
  9. D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008). [CrossRef] [PubMed]
  10. 10. K. Dahlke, C. Geyer, S. Dees, M. Helbig, J. Sachs, F. Scotto, M. Hein, W. A. Kaiser, and I. Hilger, “Effects of cell structure of Gram-positive and Gram-negative bacteria based on their dielectric properties,” in The 7th German Microwave Conference (GeMiC), 2012 (2012), pp. 1–4.
  11. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express18(3), 2797–2807 (2010). [CrossRef] [PubMed]
  12. J. Gómez Rivas, P. H. Bolívar, and H. Kurz, “Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures,” Opt. Lett.29(14), 1680–1682 (2004). [CrossRef] [PubMed]
  13. A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. Gómez Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express20(5), 5052–5060 (2012). [CrossRef] [PubMed]
  14. X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011). [CrossRef]
  15. A. Berrier, R. Ulbricht, M. Bonn, and J. Gómez Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express18(22), 23226–23235 (2010). [CrossRef] [PubMed]
  16. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002). [CrossRef] [PubMed]
  17. A. G. Markelz, “Terahertz dielectric sensitivity to biomolecular structure and function,” IEEE J. Sel. Top. Quantum Electron.14(1), 180–190 (2008). [CrossRef]
  18. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001). [CrossRef] [PubMed]
  19. A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011). [CrossRef] [PubMed]
  20. S. E. Anderson, R. Pusset, A. Berrier, F. Vinet, and G. Nonglaton, “Adaptable functionalization processes for localized bacterial capture” (unpublished).
  21. M. C. Schaafsma, H. Starmans, A. Berrier, and J. Gómez Rivas, “Enhanced THz extinction of single plasmonic antennas with conically tapered waveguides,” arXiv.org, arXiv:1208.4025 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited