OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3161–3175

Quantitative tomographic imaging of intermolecular FRET in small animals

Vivek Venugopal, Jin Chen, Margarida Barroso, and Xavier Intes  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3161-3175 (2012)
http://dx.doi.org/10.1364/BOE.3.003161


View Full Text Article

Enhanced HTML    Acrobat PDF (2694 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule.

© 2012 OSA

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: August 2, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 15, 2012
Published: November 8, 2012

Citation
Vivek Venugopal, Jin Chen, Margarida Barroso, and Xavier Intes, "Quantitative tomographic imaging of intermolecular FRET in small animals," Biomed. Opt. Express 3, 3161-3175 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009). [CrossRef] [PubMed]
  2. L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem.47(1), 819–846 (1978). [CrossRef] [PubMed]
  3. E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol.10(5), 409–416 (2006). [CrossRef] [PubMed]
  4. A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997). [CrossRef] [PubMed]
  5. M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006). [CrossRef] [PubMed]
  6. H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc.124(48), 14286–14287 (2002). [CrossRef] [PubMed]
  7. T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron27(3), 447–459 (2000). [CrossRef] [PubMed]
  8. N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001). [CrossRef] [PubMed]
  9. A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006). [CrossRef] [PubMed]
  10. T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008). [CrossRef] [PubMed]
  11. I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett.28(24), 1971–1982 (2006). [CrossRef] [PubMed]
  12. S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011). [CrossRef] [PubMed]
  13. J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third edition,” J. Biomed. Opt.13(2), 029901 (2008). [CrossRef]
  14. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005). [CrossRef] [PubMed]
  15. B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008). [CrossRef] [PubMed]
  16. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express2(5), 1340–1350 (2011). [CrossRef] [PubMed]
  17. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008). [CrossRef] [PubMed]
  18. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  19. V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009). [CrossRef] [PubMed]
  20. V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett.35(9), 1314–1316 (2010). [CrossRef] [PubMed]
  21. J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011). [CrossRef] [PubMed]
  22. A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer,” J. Cell Biol.142(1), 69–84 (1998). [CrossRef] [PubMed]
  23. H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006). [CrossRef] [PubMed]
  24. S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008). [CrossRef] [PubMed]
  25. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008). [CrossRef] [PubMed]
  26. J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express2(4), 871–886 (2011). [CrossRef] [PubMed]
  27. V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010). [CrossRef] [PubMed]
  28. C. Chang and M. Mycek, "Improving precision in time-gated FLIM for low-light live-cell imaging," in Molecular Imaging II, K. Licha and C. Lin, eds., Vol. 7370 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), paper 7370_09.
  29. S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010). [CrossRef] [PubMed]
  30. J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010). [CrossRef] [PubMed]
  31. J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express17(22), 19566–19579 (2009). [CrossRef] [PubMed]
  32. N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt.15(6), 065006 (2010). [CrossRef] [PubMed]
  33. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998). [CrossRef] [PubMed]
  34. K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett.64(22), 2647–2650 (1990). [CrossRef] [PubMed]
  35. J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt.17(10), 106009 (2012). [CrossRef]
  36. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett.23(11), 882–884 (1998). [CrossRef] [PubMed]
  37. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005). [CrossRef] [PubMed]
  38. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001). [CrossRef] [PubMed]
  39. P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78(4), 2127–2137 (2000). [CrossRef] [PubMed]
  40. N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012). [CrossRef] [PubMed]
  41. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ(s)’ and μ(a) images versus time-integrated images,” Appl. Opt.35(22), 4533–4540 (1996). [CrossRef] [PubMed]
  42. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys.38(10), 5788–5798 (2011). [CrossRef] [PubMed]
  43. S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010). [CrossRef] [PubMed]
  44. M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011). [CrossRef] [PubMed]
  45. N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011). [CrossRef] [PubMed]
  46. A. Periasamy, H. Wallrabe, Y. Chen, and M. Barroso, “Quantitation of protein–protein interactions: confocal FRET microscopy,” in Biophysical Tools for Biologists, Volume Two, Vol. 89 of Methods in Cell Biology (Academic, 2008), pp. 569–598.
  47. H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev.22(3), 225–250 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4636 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited