OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3278–3290

Bimodal spectroscopy for in vivo characterization of hypertrophic skin tissue : pre-clinical experimentation, data selection and classification

H. Liu, H. Gisquet, W. Blondel, and F. Guillemin  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3278-3290 (2012)
http://dx.doi.org/10.1364/BOE.3.003278


View Full Text Article

Acrobat PDF (1145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study aims at investigating the efficiency of bimodal spectroscopy in detection of hypertrophic scar tissue on a preclinical model. Fluorescence and Diffuse Reflectance spectra were collected from 55 scars deliberately created on ears of 20 rabbits, amongst which some received tacrolimus injection to provide non-hypertrophic scar tissue. The spectroscopic data measured on hypertrophic and non-hypertrophic scar tissues were used for developing our classification algorithm. Spectral features were extracted from corrected data and analyzed to classify the scar tissues into hypertrophic or non-hypertrophic. The Algorithm was developed using k-NN classifier and validated by comparing to histological classification result with Leave-One-Out cross validation. Bimodal spectroscopy showed promising results in detecting hypertrophic tissue (sensibility 90.5%, specificity 94.4%). The features used for classification were extracted from the autofluorescence spectra collected at 4 CEFS with excitations at 360, 410 and 420 nm. This indicates the hypertrophic process may involve change in concentration of several fluorophores (collagen, elastin and NADH) excited in this range, or modification in volume of explored tissue layers (epidermis and dermis) due to tissue thickening.

© 2012 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: June 29, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: September 28, 2012
Published: November 16, 2012

Citation
H. Liu, H. Gisquet, W. Blondel, and F. Guillemin, "Bimodal spectroscopy for in vivo characterization of hypertrophic skin tissue : pre-clinical experimentation, data selection and classification," Biomed. Opt. Express 3, 3278-3290 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3278


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. Zatsiorsky and W. Kraemer, Science and practice of strength training, 2nd ed. (Human Kinetics, 2006).
  2. B. Berman, W. Valins, S. Amini, and M.H. Viera, “Keloid and hypertrophic scar,’ http://emedicine.medscape.com/article/1057599-overview .
  3. C. W. Kischer and G. S. Brody, “Structure of the collagen nodule from hypertrophic scars and keloids,’ Scan. Electron. Microsc.3, , 371–376 (1981).
  4. G. A. Wagnieres, W. M. Star, and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,’ Photochem Photobiol.5, 603–632 (1998).
  5. K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,’ J. Fluorescence.4, 17–40 (1994). [CrossRef]
  6. I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.
  7. R. R. Anderson and J. A. Parrish, “The optics of fuman skin,’ J. Investigat. Dermatol.77, 13–19 (1981). [CrossRef]
  8. I. Georgakoudi, B.C. Jacobson, and J.V. Dam, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barret’s esophagus,’ Gastroenterology120(7), 1620–1629 (2001). [CrossRef] [PubMed]
  9. I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002). [CrossRef]
  10. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,’ Neoplasia2(1–2), 89–117 (2000). [CrossRef] [PubMed]
  11. N. M. Marìn, A. Milbourne, and H. Rhodes, “Diffuse reflectance patterns in cervical spectroscopy,’ Gynecol. Oncol.99(3), 116–120 (2005). [CrossRef]
  12. S.M. Chidananda, K. Satyamoorthy, and L. Rai, “Optical diagnosis of cervical cancer by fluorescence spectroscopy technique,’ Int. J. Cancer119(1), 139–145 (2006). [CrossRef] [PubMed]
  13. R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001). [CrossRef] [PubMed]
  14. C. Zhu, G.M. Palmer, and T.M. Breslin, “Use of a multisepartation fiber optical probe for the optical diagnosis of breast cancer,’ J. Biomed. Opt.10(2), 024032 (2001). [CrossRef]
  15. J. R. Mourant, I. J. Bigio, and J. Boyer, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,’ Lasers Surg. Med.17, 350–357 (1995). [CrossRef] [PubMed]
  16. B. W. Murphy and R. J. Webster, “Toward the disctrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,’ J. Biomed. Opt.10(6), 064020 (2005). [CrossRef]
  17. G. Zonios, L.T. Perelman, and V. Backman, “Diffuse reflectance spectroscopy of human ademonatous colon polyps,’ Appl. Opt.38(31), 6628–3667 (1999). [CrossRef]
  18. E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009). [CrossRef] [PubMed]
  19. G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).
  20. M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009). [CrossRef] [PubMed]
  21. G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009). [CrossRef]
  22. N. M. Marin, N. McKinnon, and C. MacAulay, “Calibration standards for multicenter clinical trial of fluorescence spectroscopy for in vivo diagnosis’ J. Biomed. Opt.11(1), 014010 (2006). [CrossRef] [PubMed]
  23. H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011). [CrossRef] [PubMed]
  24. J. E Jackson, User’s guide to Principle Component (Wiley, 1991).
  25. M. Dash and H. Liu, “Features selection for classification’ Intell. Data Anal.1, 131–156 (1997). [CrossRef]
  26. M. Schumacher, N. Hollander, and W. Sauerbrei, “Resampling and cross-validation techniques : a tool to reduce bias caused by model building,’ Stat. Med.16(24), 2813—2827 (1997). [CrossRef]
  27. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002). [CrossRef] [PubMed]
  28. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,’ Opt. Express14(10), 4395–4402 (2006). [CrossRef] [PubMed]
  29. G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).
  30. R. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. Neil, A. de Mello, and P. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,’ Opt. Express13(16), 6275–6285 (2005). [CrossRef] [PubMed]
  31. A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).
  32. N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,’ Vibrat. Spectrosc.28, 17–23 (2002). [CrossRef]
  33. K. M. Katika and L. Pilon, “Steady-state directional diffuse reflectance and fluorescence of human skin,’ Appl. Opt.45(17), 4174—4183 (2006). [CrossRef] [PubMed]
  34. F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998). [CrossRef]
  35. V. Tuchin, Tissue Optics : Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).
  36. O. Kloeters, A. Tandara, and T. A. Mustoe, “Hypertrophic scar model in the rabbit ear : a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction’ Wound Repair Regenerat.15(Suppl. 1), S40–S45(2008). [CrossRef]
  37. R. Kortum and E. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,’ Annu. Rev. Phys. Chem.47, 555–606 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited