OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3332–3345

Nanosecond laser pulse stimulation of the inner ear—a wavelength study

Michael Schultz, Peter Baumhoff, Hannes Maier, Ingo U. Teudt, Alexander Krüger, Thomas Lenarz, and Andrej Kral  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3332-3345 (2012)
http://dx.doi.org/10.1364/BOE.3.003332


View Full Text Article

Enhanced HTML    Acrobat PDF (2982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical stimulation of the inner ear, the cochlea, is discussed as a possible alternative to conventional cochlear implants with the hypothetical improvement of dynamic range and frequency resolution. In this study nanosecond-pulsed optical stimulation of the hearing and non-hearing inner ear is investigated in vivo over a wide range of optical wavelengths and at different beam delivery locations. Seven anaesthetized guinea pigs were optically stimulated before and after neomycin induced destruction of hair cells. An optical parametric oscillator was tuned to different wavelengths (420 nm–2150 nm, ultraviolet to near-infrared) and delivered 3–5 ns long pulses with 6 µJ pulse energy via a multimode optical fiber located either extracochlearly in front of the intact round window membrane or intracochlearly within the scala tympani. Cochlear responses were measured using registration of compound action potentials (CAPs). With intact hair cells CAP similar to acoustic stimulation were measured at both locations, while the neomycin treated cochleae did not show any response in any case. The CAP amplitudes of the functional cochleae showed a positive correlation to the absorption coefficient of hemoglobin and also to moderate water absorption. A negative correlation of CAP amplitude with a water absorption coefficient greater than 5.5 cm−1 indicates additional phenomena. We conclude that in our stimulation paradigm with ns-pulses the most dominant stimulation effect is of optoacoustic nature and relates to functional hair cells.

© 2012 OSA

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(140.3600) Lasers and laser optics : Lasers, tunable
(170.4940) Medical optics and biotechnology : Otolaryngology
(330.5380) Vision, color, and visual optics : Physiology
(170.1065) Medical optics and biotechnology : Acousto-optics
(110.5125) Imaging systems : Photoacoustics
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Otolaryngology

History
Original Manuscript: August 17, 2012
Revised Manuscript: November 13, 2012
Manuscript Accepted: November 23, 2012
Published: November 28, 2012

Citation
Michael Schultz, Peter Baumhoff, Hannes Maier, Ingo U. Teudt, Alexander Krüger, Thomas Lenarz, and Andrej Kral, "Nanosecond laser pulse stimulation of the inner ear—a wavelength study," Biomed. Opt. Express 3, 3332-3345 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. F. Dorman and B. S. Wilson, “The design and function of cochlear implants,” Am. Sci.92, 436–445 (2004).
  2. A. Kral and G. M. O’Donoghue, “Profound deafness in childhood,” N. Engl. J. Med.363(15), 1438–1450 (2010). [CrossRef] [PubMed]
  3. A. Kral, R. Hartmann, D. Mortazavi, and R. Klinke, “Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents,” Hearing Res.121(1-2), 11–28 (1998). [CrossRef] [PubMed]
  4. A. D. Izzo, J. T. Walsh, J. Pathria, E. Suh, C.-P. Richter, D. S. Whitlon, and E. D. Jansen, “Selectivity of optical stimulation in the auditory system,” Proc. SPIE6078, 60781P (2006). [CrossRef]
  5. A. D. Izzo, C.-P. Richter, E. D. Jansen, and J. T. Walsh., “Laser stimulation of the auditory nerve,” Lasers Surg. Med.38(8), 745–753 (2006). [CrossRef] [PubMed]
  6. M. A. Gimeno, C. M. Robets, and J. L. Webb, “Acceleration of rate of the early chick embryo heart by visible light,” Nature214(5092), 1014–1016 (1967). [CrossRef] [PubMed]
  7. M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics4(9), 623–626 (2010). [CrossRef] [PubMed]
  8. M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat Commun.3, 736 (2012). [CrossRef] [PubMed]
  9. I. U. Teudt, H. Maier, C.-P. Richter, and A. Kral, “Acoustic events and “optophonic” cochlear responses induced by pulsed near-infrared laser,” IEEE Trans. Biomed. Eng.58(6), 1648–1655 (2011). [CrossRef] [PubMed]
  10. G. I. Wenzel, S. Balster, K. Zhang, H. H. Lim, U. Reich, O. Massow, H. Lubatschowski, W. Ertmer, T. Lenarz, and G. Reuter, “Green laser light activates the inner ear,” J. Biomed. Opt.14(4), 044007 (2009). [CrossRef] [PubMed]
  11. K. Y. Zhang, G. I. Wenzel, S. Balster, H. H. Lim, H. Lubatschowski, T. Lenarz, W. Ertmer, and G. Reuter, “Optoacoustic induced vibrations within the inner ear,” Opt. Express17(25), 23037–23043 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-23037 . [CrossRef] [PubMed]
  12. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003). [CrossRef] [PubMed]
  13. C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh., “Neural stimulation with optical radiation,” Laser Photonics Rev.5(1), 68–80 (2011). [CrossRef] [PubMed]
  14. I. Sendowski, A. Braillon-Cros, and C. Delaunay, “CAP amplitude after impulse noise exposure in guinea pigs,” Eur. Arch. Otorhinolaryngol.261(2), 77–81 (2004). [CrossRef] [PubMed]
  15. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  16. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64(8), 1107–1110 (1974). [CrossRef]
  17. S. Prahl, “Optical absorption of hemoglobin” (1998), tabulated molar extinction coefficient for hemoglobin in water using data from W. B. Gratzer, Medical Research Council Labs, Holly Hill, London, UK and N. Kollias, Wellman Laboratories, Harvard Medical School, Boston, MA, USA, at http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  18. The correlation between CAP amplitude and both absorption coefficients is a consequence of a mutual negative correlation of the absorption coefficients (rHbO2vsWater2 = 0.57, p < 0.001).
  19. J. J. Eggermont, “Analysis of compound action potential responses to tone bursts in the human and guinea pig cochlea,” J. Acoust. Soc. Am.60(5), 1132–1139 (1976). [CrossRef] [PubMed]
  20. C.-P. Richter and A. I. Matic, “Chapter 6: Optical stimulation of the auditory nerve,” in Auditory Prostheses: New Horizons, F.-G. Zeng, A. N. Popper, and R. R. Fay, eds. (Springer, 2011), pp. 135–156.
  21. C.-P. Richter, R. Bayon, A. D. Izzo, M. Otting, E. Suh, S. Goyal, J. Hotaling, and J. T. Walsh., “Optical stimulation of auditory neurons: effects of acute and chronic deafening,” Hearing Res.242(1-2), 42–51 (2008). [CrossRef] [PubMed]
  22. E. F. Carome, N. A. Clark, and C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser induced thermal stress transients,” Appl. Phys. Lett.4(6), 95–97 (1964). [CrossRef]
  23. A. G. Bell, Upon the Production of Sound by Radiant Energy (Gibson Brothers, Washington, D.C., 1881), pp. 1–45
  24. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys.88(3), 1632–1637 (2000). [CrossRef]
  25. S. M. Rajguru, C.-P. Richter, A. I. Matic, G. R. Holstein, S. M. Highstein, G. M. Dittami, and R. D. Rabbitt, “Infrared photostimulation of the crista ampullaris,” J. Physiol.589(6), 1283–1294 (2011). [CrossRef] [PubMed]
  26. R. L. Fork, “Laser stimulation of nerve cells in Aplysia,” Science171(3974), 907–908 (1971). [CrossRef] [PubMed]
  27. I. U. Teudt, A. E. Nevel, A. D. Izzo, J. T. Walsh, and C.-P. Richter, “Optical stimulation of the facial nerve: A new monitoring technique?” Laryngoscope117(9), 1641–1647 (2007). [CrossRef] [PubMed]
  28. J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30(5), 504–506 (2005). [CrossRef] [PubMed]
  29. F. J. Julian and D. E. Goldman, “The effects of mechanical stimulation on some electrical properties of axons,” J. Gen. Physiol.46(2), 297–313 (1962). [CrossRef] [PubMed]
  30. F. Sachs, “Stretch-activated ion channels: What are they?” Physiology (Bethesda)25(1), 50–56 (2010). [CrossRef] [PubMed]
  31. M. A. Ruggero and A. N. Temchin, “Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods,” J. Assoc. Res. Otolaryngol.8(2), 153–166 (2007). [CrossRef] [PubMed]
  32. P. Magnan, P. Avan, A. Dancer, J. Smurzynski, and R. Probst, “Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones,” Hearing Res.107(1-2), 41–45 (1997). [CrossRef] [PubMed]
  33. C. A. Miller, P. J. Abbas, J. T. Rubinstein, B. K. Robinson, A. J. Matsuoka, and G. Woodworth, “Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation,” Hearing Res.119(1-2), 142–154 (1998). [CrossRef] [PubMed]
  34. A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Biomed. Eng.54(6), 1108–1114 (2007). [CrossRef] [PubMed]
  35. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, and A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med.14(3), 258–268 (1994). [CrossRef] [PubMed]
  36. G. Paltauf, H. Schmidt-Kloiber, and M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am.104(2), 890–897 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited