OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3346–3356

Dual instrument for in vivo and ex vivo OCT imaging in an ENT department

Ramona Cernat, Taran S. Tatla, Jingyin Pang, Paul J. Tadrous, Adrian Bradu, George Dobre, Grigory Gelikonov, Valentin Gelikonov, and Adrian Gh. Podoleanu  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 12, pp. 3346-3356 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual instrument is assembled to investigate the usefulness of optical coherence tomography (OCT) imaging in an ear, nose and throat (ENT) department. Instrument 1 is dedicated to in vivo laryngeal investigation, based on an endoscope probe head assembled by compounding a miniature transversal flying spot scanning probe with a commercial fiber bundle endoscope. This dual probe head is used to implement a dual channel nasolaryngeal endoscopy-OCT system. The two probe heads are used to provide simultaneously OCT cross section images and en face fiber bundle endoscopic images. Instrument 2 is dedicated to either in vivo imaging of accessible surface skin and mucosal lesions of the scalp, face, neck and oral cavity or ex vivo imaging of the same excised tissues, based on a single OCT channel. This uses a better interface optics in a hand held probe. The two instruments share sequentially, the swept source at 1300 nm, the photo-detector unit and the imaging PC. An aiming red laser is permanently connected to the two instruments. This projects visible light collinearly with the 1300 nm beam and allows pixel correspondence between the en face endoscopy image and the cross section OCT image in Instrument 1, as well as surface guidance in Instrument 2 for the operator. The dual channel instrument was initially tested on phantom models and then on patients with suspect laryngeal lesions in a busy ENT practice. This feasibility study demonstrates the OCT potential of the dual imaging instrument as a useful tool in the testing and translation of OCT technology from the lab to the clinic. Instrument 1 is under investigation as a possible endoscopic screening tool for early laryngeal cancer. Larger size and better quality cross-section OCT images produced by Instrument 2 provide a reference base for comparison and continuing research on imaging freshly excised tissue, as well as in vivo interrogation of more superficial skin and mucosal lesions in the head and neck patient.

© 2012 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:

Original Manuscript: October 10, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 21, 2012
Published: November 28, 2012

Ramona Cernat, Taran S. Tatla, Jingyin Pang, Paul J. Tadrous, Adrian Bradu, George Dobre, Grigory Gelikonov, Valentin Gelikonov, and Adrian Gh. Podoleanu, "Dual instrument for in vivo and ex vivo OCT imaging in an ENT department," Biomed. Opt. Express 3, 3346-3356 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Rhys Evans, P. Q. Montgomery, and P. J. Gullane, Principles and Practice of Head and Neck Oncology (Taylor & Francis, London, 2003).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  3. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995). [CrossRef] [PubMed]
  4. V. M. Gelikonov and N. D. Gladkova, “A decade of optical coherence tomography in Russia: from experiment to clinical practice,” Radiophys. Quantum Electron.47(10-11), 835–847 (2004). [CrossRef]
  5. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, Berlin, 2008).
  6. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, and O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express1(13), 432–440 (1997). [CrossRef] [PubMed]
  7. B. J. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005). [CrossRef] [PubMed]
  8. W. B. Armstrong, J. M. Ridgway, D. E. Vokes, S. Guo, J. Perez, R. P. Jackson, M. Gu, J. Su, R. L. Crumley, T. Y. Shibuya, U. Mahmood, Z. Chen, and B. J. F. Wong, “Optical coherence tomography of laryngeal cancer,” Laryngoscope116(7), 1107–1113 (2006). [CrossRef] [PubMed]
  9. R. A. McLaughlin and D. D. Sampson, “Clinical applications of fiber-optic probes in optical coherence tomography,” Opt. Fiber Technol.16(6), 467–475 (2010). [CrossRef]
  10. H. D. Ford and R. P. Tatam, “Characterization of optical fiber imaging bundles for swept-source optical coherence tomography,” Appl. Opt.50(5), 627–640 (2011). [CrossRef] [PubMed]
  11. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005). [CrossRef] [PubMed]
  12. W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng.48(10), 103001 (2009). [CrossRef]
  13. J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008). [CrossRef] [PubMed]
  14. X. J. Mu, G. Y. Zhou, H. H. Feng, Y. S. Xu, A. B. Yu, C. W. Tan, K. W. S. Chen, J. Xie, and F. S. Chau, “A 3 mm endoscopic probe with integrated MEMS micromirror for optical coherence tomography bioimaging,” in Proceedings of Eurosensors XXIV (2010), Vol. 5, pp. 681–684.
  15. K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express18(14), 14644–14653 (2010). [CrossRef] [PubMed]
  16. H.-C. Park, C. Song, M. Kang, Y. Jeong, and K.-H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett.37(13), 2673–2675 (2012). [CrossRef] [PubMed]
  17. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express18(14), 14375–14384 (2010). [CrossRef] [PubMed]
  18. S. Moon, S. W. Lee, M. Rubinstein, B. J. F. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express18(20), 21183–21197 (2010). [CrossRef] [PubMed]
  19. R. Cernat, Y. Y. Zhang, A. Bradu, T. Tatla, P. J. Tadrous, X. D. Li, A. Gh, and A. G. Podoleanu“Ex vivo OCT imaging of larynx using forward-viewing resonant fiber-scanning endoscope,” Proc. SPIE8213, 82133M (2012). [CrossRef]
  20. U. Mahmood, J. Ridgway, R. Jackson, S. Guo, J. Su, W. Armstrong, T. Shibuya, R. Crumley, Z. Chen, and B. Wong, “In vivo optical coherence tomography of the nasal mucosa,” Am. J. Rhinol.20(2), 155–159 (2006). [PubMed]
  21. A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006). [PubMed]
  22. S. Guo, R. Hutchison, R. P. Jackson, A. Kohli, T. Sharp, E. Orwin, R. Haskell, Z. Chen, and B. J. F. Wong, “Office-based optical coherence tomographic imaging of human vocal cords,” J. Biomed. Opt.11(3), 030501 (2006). [CrossRef] [PubMed]
  23. M. Rubinstein, E. L. Fine, A. Sepehr, W. B. Armstrong, R. L. Crumley, J. H. Kim, Z. Chen, and B. J. F. Wong, “Optical coherence tomography of the larynx using the Niris system,” J Otolaryngol Head Neck Surg39(2), 150–156 (2010). [PubMed]
  24. Imalux, “Products,” http://www.imalux.com/products.htm .
  25. A. Sepehr, W. B. Armstrong, S. Guo, J. Su, J. Perez, Z. Chen, and B. J. F. Wong, “Optical coherence tomography of the larynx in the awake patient,” Otolaryngol. Head Neck Surg.138(4), 425–429 (2008). [CrossRef] [PubMed]
  26. American National Standards Institute, “American national standard for the safe use of lasers,” ANSI Z136.1 (ANSI, 1993).
  27. S. Guo, L. Yu, A. Sepehr, J. Perez, J. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt.14(1), 014017 (2009). [CrossRef] [PubMed]
  28. F. I. Feldchtein, V. M. Gelikonov, and G. V. Gelikonov, “Design of OCT scanners,” in Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2001), pp. 131–142.
  29. A. C. Swift, “Guidance on the decontamination and sterilization of rigid and flexible endoscopes,” ENT UK trading as British Academic Conference in Otolaryngology (BACO) and British Association of Otorhinolaryngology, Head & Neck Surgery (BAO-HNS, 2010).
  30. L. Ma, A. Bradu, A. G. Podoleanu, and J. W. Bloor, “Arrhythmia caused by a Drosophila tropomyosin mutation is revealed using a novel optical coherence tomography instrument,” PLoS ONE5(12), e14348 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited