OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 418–434

Determining the optical properties of a gelatin‑TiO2 phantom at 780 nm

H. Günhan Akarçay, Stefan Preisser, Martin Frenz, and Jaro Rička  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 418-434 (2012)
http://dx.doi.org/10.1364/BOE.3.000418


View Full Text Article

Acrobat PDF (1711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tissue phantoms play a central role in validating biomedical imaging techniques. Here we employ a series of methods that aim to fully determine the optical properties, i.e., the refractive index n, absorption coefficient μa, transport mean free path ℓ*, and scattering coefficient μs of a TiO2 in gelatin phantom intended for use in optoacoustic imaging. For the determination of the key parameters μa and ℓ*, we employ a variant of time of flight measurements, where fiber optodes are immersed into the phantom to minimize the influence of boundaries. The robustness of the method was verified with Monte Carlo simulations, where the experimentally obtained values served as input parameters for the simulations. The excellent agreement between simulations and experiments confirmed the reliability of the results. The parameters determined at 780 nm are n=1.359(±0.002), μ s=1/ℓ*=0.22(±0.02) mm-1, μa= 0.0053(+0.0006-0.0003) mm-1, and μs=2.86(±0.04) mm-1. The asymmetry parameter g obtained from the parameters ℓ* and μ s is 0.93, which indicates that the scattering entities are not bare TiO2 particles but large sparse clusters. The interaction between the scattering particles and the gelatin matrix should be taken into account when developing such phantoms.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Calibration, Validation and Phantom Studies

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 18, 2012
Published: February 7, 2012

Citation
H. Günhan Akarçay, Stefan Preisser, Martin Frenz, and Jaro Rička, "Determining the optical properties of a gelatin‑TiO2 phantom at 780 nm," Biomed. Opt. Express 3, 418-434 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-418


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006). [CrossRef]
  3. K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol.52(20), N475–N484 (2007). [CrossRef] [PubMed]
  4. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005). [CrossRef] [PubMed]
  5. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express2(11), 3193–3206 (2011). [CrossRef] [PubMed]
  6. M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt.14(5), 054011 (2009). [CrossRef] [PubMed]
  7. M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol.56(18), 5889–5901 (2011). [CrossRef] [PubMed]
  8. A. Kim and B. C. Wilson, “Measurement of ex vivo and in vivo tissue optical properties: methods and theories,” in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed. (Wiley, Springer Netherlands, 2011), Chap. 8.
  9. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt.46(2), 262–272 (2007). [CrossRef] [PubMed]
  10. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47(16), 2847–2861 (2002). [CrossRef] [PubMed]
  11. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A.98(8), 4420–4425 (2001). [CrossRef] [PubMed]
  12. RefractiveIndex.INFO, http://refractiveindex.info/?group=CRYSTALS&material=TiO2 (retrieved Nov. 2011).
  13. The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” Erlangen, Germany (Sept. 1997).
  14. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  15. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B11(10), 2128–2138 (1994). [CrossRef]
  16. A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol.40(11), 1957–1975 (1995). [CrossRef] [PubMed]
  17. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997). [CrossRef] [PubMed]
  18. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008). [CrossRef] [PubMed]
  19. F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE6870, 687007, 687007-9 (2008). [CrossRef]
  20. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006). [CrossRef] [PubMed]
  21. B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, and T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt.36(28), 7257–7269 (1997). [CrossRef] [PubMed]
  22. E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile,” J. Am. Ceram. Soc.81(3), 469–479 (1998). [CrossRef]
  23. J. Rička and M. Frenz, “From electrodynamics to Monte Carlo simulations,” in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed. (Wiley, Springer Netherlands, 2011), Chap. 7.
  24. E. Moreels, W. De Ceuninck, and R. Finsy, “Measurements of the Rayleigh ratio of some pure liquids at several laser light wavelengths,” J. Chem. Phys.86(2), 618–623 (1987). [CrossRef]
  25. H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE8088, 80880K (2011). [CrossRef]
  26. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A16(12), 2935–2945 (1999). [CrossRef]
  27. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett.21(7), 546–548 (1996). [CrossRef] [PubMed]
  28. K. Tahir and C. Dainty, “Experimental measurements of light scattering from samples with specified optical properties,” J. Opt. A, Pure Appl. Opt.7(5), 207–214 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited