OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 4 — Apr. 1, 2012
  • pp: 741–752

Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography

Jun Ke and Edmund Y. Lam  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 4, pp. 741-752 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (8384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In spectral-domain optical coherence tomography (SD-OCT), data samples are collected nonuniformly in the wavenumber domain, requiring a measurement re-sampling process before a conventional fast Fourier transform can be applied to reconstruct an image. This re-sampling necessitates extra computation and often introduces errors in the data. Instead, we develop an inverse imaging approach to reconstruct an SD-OCT image. We make use of total variation (TV) as a constraint to preserve the image edges, and estimate the two-dimensional cross-section of a sample directly from the SD-OCT measurements rather than processing for each A-line. Experimental results indicate that compared with the conventional method, our technique gives a smaller noise residual. The potential of using the TV constraint to suppress sensitivity falloff in SD-OCT is also demonstrated with experiment data.

© 2012 OSA

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(110.4500) Imaging systems : Optical coherence tomography
(110.1758) Imaging systems : Computational imaging

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: February 1, 2012
Revised Manuscript: March 7, 2012
Manuscript Accepted: March 9, 2012
Published: March 21, 2012

Jun Ke and Edmund Y. Lam, "Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography," Biomed. Opt. Express 3, 741-752 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer-Verlag, Berlin, 2008). [CrossRef]
  3. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49, D3–D60 (2010). [CrossRef]
  4. D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011). [CrossRef]
  5. R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.
  6. T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011). [CrossRef]
  7. K. H. Y. Cheng, B. A. Standish, V. X. D. Yang, K. K. Y. Cheung, X. Gu, E. Y. Lam, and K. K. Y. Wong, “Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers,” Opt. Express18, 1909–1915 (2010). [CrossRef] [PubMed]
  8. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–893 (2003). [CrossRef] [PubMed]
  9. S.-H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3μm wavelength,” Opt. Express11, 3598–3604 (2003). [CrossRef] [PubMed]
  10. M. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  11. Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt.49, 4756–4762 (2010). [CrossRef] [PubMed]
  12. K. Zhang and J. U. Kang, “Graphic processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18, 23472–23487 (2010). [CrossRef] [PubMed]
  13. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17, 12121–12131 (2009). [CrossRef] [PubMed]
  14. H. K. Chan and S. Tang, “High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform,” Biomed. Opt. Express1, 1309–1319 (2010). [CrossRef]
  15. L. I. Rudin, S. Osher, and E. Fatemi, “An accurate algorithm for nonuniform fast Fourier transforms (NUFFTs),” IEEE Microwave Guided Wave Lett. 8, 18–20 (1998). [CrossRef]
  16. L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev.46, 443–454 (2004). [CrossRef]
  17. M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography,” Appl. Opt.50, 1158–1162 (2011). [CrossRef] [PubMed]
  18. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt.48, H113–H119 (2009). [CrossRef] [PubMed]
  19. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D: Nonlinear Phenomena60, 259–268 (1992). [CrossRef]
  20. J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniform samples in spectral domain optical coherence tomography,” in Signal Recovery and Synthesis, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD2.
  21. J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniformly-spaced samples in Fourier domain optical coherence tomography,” Proc. SPIE8296, 829610 (2012). [CrossRef]
  22. Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A27, 1638–1646 (2010). [CrossRef]
  23. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A27, 1630–1637 (2010). [CrossRef]
  24. G. H. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, 1996).
  25. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning3, 1–122 (2010). [CrossRef]
  26. Y. Huang, M. K. Ng, and Y. Wen, “A fast total variation minimization method for image restoration,” Multiscale Modeling & Simulat.7, 774–795 (2008). [CrossRef] [PubMed]
  27. X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express16, 17215–17226 (2008). [CrossRef] [PubMed]
  28. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004). [CrossRef]
  29. J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt.50, H285–H296 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited