OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 4 — Apr. 1, 2012
  • pp: 753–763

Mechanochemistry of single red blood cells monitored using Raman tweezers

Saurabh Raj, Mónica Marro, Michal Wojdyla, and Dmitri Petrov  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 4, pp. 753-763 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1752 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two microparticles were biochemically attached to a red blood cell at diametrically opposite parts and held by optical traps allowing to impose deformations. The cell deformation was monitored from the microscopy images. Raman spectra of the cell under tunable deformations were studied. Vibrational spectra analysis at different stretching states was supported with two statistical methods. Principal Component Analysis distinguishes the most prominent changes in spectra while 2D correlation technique monitors the evolution of Raman bands during stretching. The measurements show significant changes in the cell chemical structure with stretching however the changes saturate above 20% of cell deformation. Mechanical deformation of the cell mainly affects the bands corresponding to hemoglobin but contributions from spectrin and membrane proteins can not be excluded. The saturation of bands at higher deformations suggests some structural relaxation that RBC has to undergo to bear extra load. The results confirm widely accepted belief that spectrin released from membrane proteins allows for significant shape changes of the cells. We therefore tentatively suggest that interaction between membrane and cytoskeleton during deformation can be efficiently probed by confocal Raman spectroscopy, in particular via the peak around 1035 cm−1.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Cell Studies

Original Manuscript: January 24, 2012
Revised Manuscript: March 13, 2012
Manuscript Accepted: March 13, 2012
Published: March 22, 2012

Saurabh Raj, Mónica Marro, Michal Wojdyla, and Dmitri Petrov, "Mechanochemistry of single red blood cells monitored using Raman tweezers," Biomed. Opt. Express 3, 753-763 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J.13, 941–954 (1973). [CrossRef] [PubMed]
  2. A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982). [CrossRef] [PubMed]
  3. S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol.49, 177–192 (1987). [CrossRef] [PubMed]
  4. S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999). [CrossRef] [PubMed]
  5. M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51, 2259–2280 (2003). [CrossRef]
  6. J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).
  7. A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011). [CrossRef]
  8. G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001). [CrossRef] [PubMed]
  9. Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011). [CrossRef]
  10. G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater.2, 715–725 (2003). [CrossRef] [PubMed]
  11. S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res.21, 1871–1877 (2006). [CrossRef]
  12. J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta382, 51–57 (1975). [CrossRef] [PubMed]
  13. D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta382, 542–551 (1975). [CrossRef] [PubMed]
  14. S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993). [CrossRef]
  15. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007). [CrossRef]
  16. R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009). [CrossRef]
  17. A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010). [CrossRef] [PubMed]
  18. T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008). [CrossRef]
  19. K. Chen, Y. Oin, F. Zheng, M. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett.31, 2015–2017 (2006). [CrossRef] [PubMed]
  20. J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006). [CrossRef]
  21. J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005). [CrossRef]
  22. S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009). [CrossRef]
  23. Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008). [CrossRef] [PubMed]
  24. C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun.245, 465–470 (2005). [CrossRef]
  25. S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010). [CrossRef]
  26. C. H. Reinsch, “Smoothing by spline functions,” Numer. Math.10, 177–183 (1967). [CrossRef]
  27. A. C. Rencher, Methods of Multivariate Analysis (Wiley, 2002). [CrossRef]
  28. I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004). [CrossRef] [PubMed]
  29. S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011). [CrossRef]
  30. B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta1539, 58–70 (2001). [CrossRef] [PubMed]
  31. B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc.33, 517–523 (2002). [CrossRef]
  32. X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005). [PubMed]
  33. S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc.118, 12,638–12,646 (1996). [CrossRef]
  34. N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry16, 5585–5592 (1977). [CrossRef] [PubMed]
  35. S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975). [CrossRef] [PubMed]
  36. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem.148, 173–183 (1943).
  37. V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem.255, 2540–2548 (1980). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited