OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 4 — Apr. 1, 2012
  • pp: 777–791

Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow

Hart Levy, Dene Ringuette, and Ofer Levi  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 4, pp. 777-791 (2012)
http://dx.doi.org/10.1364/BOE.3.000777


View Full Text Article

Enhanced HTML    Acrobat PDF (1577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: Imaging blood flow or oxygenation changes using optical techniques is useful for monitoring cortical activity in healthy subjects as well as in diseased states such as stroke or epilepsy. However, in order to gain a better understanding of hemodynamics in conscious, freely moving animals, these techniques must be implemented in a small scale, portable design that is adaptable to a wearable format. We demonstrate a novel system which combines the two techniques of laser speckle contrast imaging and intrinsic optical signal imaging simultaneously, using compact laser sources, to monitor induced cortical ischemia in a full field format with high temporal acquisition rates. We further demonstrate the advantages of using combined measurements of speckle contrast and oxygenation to establish absolute flow velocities, as well as to statistically distinguish between veins and arteries. We accomplish this system using coherence reduction techniques applied to Vertical Cavity Surface Emitting Lasers (VCSELs) operating at 680, 795 and 850 nm. This system uses minimal optical components and can easily be adapted into a portable format for continuous monitoring of cortical hemodynamics.

© 2012 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: December 22, 2012
Revised Manuscript: February 10, 2012
Manuscript Accepted: March 25, 2012
Published: March 27, 2012

Citation
Hart Levy, Dene Ringuette, and Ofer Levi, "Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow," Biomed. Opt. Express 3, 777-791 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-4-777


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A.102(10), 3822–3827 (2005). [CrossRef] [PubMed]
  2. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008). [CrossRef] [PubMed]
  3. F. Di Salle, E. Formisano, D. E. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol.30(2), 84–94 (1999). [CrossRef] [PubMed]
  4. T. H. Schwartz, S.-B. Hong, A. P. Bagshaw, P. Chauvel, and C.-G. Bénar, “Preictal changes in cerebral haemodynamics: review of findings and insights from intracerebral EEG,” Epilepsy Res.97(3), 252–266 (2011). [CrossRef] [PubMed]
  5. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  6. J. C. Eliassen, E. L. Boespflug, M. Lamy, J. Allendorfer, W. J. Chu, and J. P. Szaflarski, “Brain-mapping techniques for evaluating poststroke recovery and rehabilitation: a review,” Top. Stroke Rehabil.15(5), 427–450 (2008). [CrossRef] [PubMed]
  7. K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex17(4), 942–950 (2007). [CrossRef] [PubMed]
  8. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2(12), 941–950 (2005). [CrossRef] [PubMed]
  9. P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011). [CrossRef] [PubMed]
  10. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods8(10), 871–878 (2011). [CrossRef] [PubMed]
  11. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express17(18), 15670–15678 (2009). [CrossRef] [PubMed]
  12. A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt.13(4), 044038 (2008). [CrossRef] [PubMed]
  13. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett.28(1), 28–30 (2003). [CrossRef] [PubMed]
  14. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett.34(9), 1480–1482 (2009). [CrossRef] [PubMed]
  15. E. A. Munro, H. Levy, D. Ringuette, T. D. O’Sullivan, and O. Levi, “Multi-modality optical neural imaging using coherence control of VCSELs,” Opt. Express19(11), 10747–10761 (2011). [CrossRef] [PubMed]
  16. R. Michalzik and K. J. Ebeling, “Operating Principles of VCSELs,” in Vertical-Cavity Surface-Emitting Laser Devices, H. Li, and K. Iga, eds. (Springer-Verlag, Berlin, 2003), pp. 53–98.
  17. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66(11), 1145–1150 (1976). [CrossRef]
  18. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, Hoboken, NJ, 2007).
  19. F. Adhami, G. Liao, Y. M. Morozov, A. Schloemer, V. J. Schmithorst, J. N. Lorenz, R. S. Dunn, C. V. Vorhees, M. Wills-Karp, J. L. Degen, R. J. Davis, N. Mizushima, P. Rakic, B. J. Dardzinski, S. K. Holland, F. R. Sharp, and C. Y. Kuan, “Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy,” Am. J. Pathol.169(2), 566–583 (2006). [CrossRef] [PubMed]
  20. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008). [CrossRef] [PubMed]
  21. C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007). [CrossRef] [PubMed]
  22. A. J. Blood and A. W. Toga, “Optical intrinsic signal imaging responses are modulated in rodent somatosensory cortex during simultaneous whisker and forelimb stimulation,” J. Cereb. Blood Flow Metab.18(9), 968–977 (1998). [CrossRef] [PubMed]
  23. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009–016014 (2011). [CrossRef] [PubMed]
  24. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express16(5), 3197–3203 (2008). [CrossRef] [PubMed]
  25. J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol.55(22), 6857–6866 (2010). [CrossRef] [PubMed]
  26. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett.90(5), 053901 (2007). [CrossRef]
  27. R. Hebel and M. W. Stromberg, Anatomy and Embryology of the Laboratory Rat (BioMed Verlag, 1986).
  28. H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006). [CrossRef] [PubMed]
  29. K. A. Hossmann, “Periinfarct depolarizations,” Cerebrovasc. Brain Metab. Rev.8(3), 195–208 (1996). [PubMed]
  30. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  31. M. R. Zhao, J. Nguyen, H. T. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci.31(37), 13292–13300 (2011). [CrossRef] [PubMed]
  32. T. H. Schwartz, “Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset,” Epilepsy Curr.7(4), 91–94 (2007). [CrossRef] [PubMed]
  33. P. Padmawar, X. Yao, O. Bloch, G. T. Manley, and A. S. Verkman, “K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator,” Nat. Methods2(11), 825–827 (2005). [CrossRef] [PubMed]
  34. F. Amzica, M. Massimini, and A. Manfridi, “Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo,” J. Neurosci.22(3), 1042–1053 (2002). [PubMed]
  35. S. Dufour, P. Dufour, O. Chever, R. Vallée, and F. Amzica, “In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode,” J. Neurosci. Methods194(2), 206–217 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (8575 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited