OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 1025–1046

Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT

Heike H. Müller, Lars Ptaszynski, Kerstin Schlott, Christina Debbeler, Marco Bever, Stefan Koinzer, Reginald Birngruber, Ralf Brinkmann, and Gereon Hüttmann  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 5, pp. 1025-1046 (2012)
http://dx.doi.org/10.1364/BOE.3.001025


View Full Text Article

Enhanced HTML    Acrobat PDF (2067 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Visualizing retinal photocoagulation by real-time OCT measurements may considerably improve the understanding of thermally induced tissue changes and might enable a better reproducibility of the ocular laser treatment. High speed Doppler OCT with 860 frames per second imaged tissue changes in the fundus of enucleated porcine eyes during laser irradiation. Tissue motion, measured by Doppler OCT with nanometer resolution, was correlated with the temperature increase, which was measured non-invasively by optoacoustics. In enucleated eyes, the increase of the OCT signal near the retinal pigment epithelium (RPE) corresponded well to the macroscopically visible whitening of the tissue. At low irradiance, Doppler OCT revealed additionally a reversible thermal expansion of the retina. At higher irradiance additional movement due to irreversible tissue changes was observed. Measurements of the tissue expansion were also possible in vivo in a rabbit with submicrometer resolution when global tissue motion was compensated. Doppler OCT may be used for spatially resolved measurements of retinal temperature increases and thermally induced tissue changes. It can play an important role in understanding the mechanisms of photocoagulation and, eventually, lead to new strategies for retinal laser treatments.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Ophthalmology Applications

History
Original Manuscript: February 9, 2012
Revised Manuscript: March 29, 2012
Manuscript Accepted: April 2, 2012
Published: April 19, 2012

Citation
Heike H. Müller, Lars Ptaszynski, Kerstin Schlott, Christina Debbeler, Marco Bever, Stefan Koinzer, Reginald Birngruber, Ralf Brinkmann, and Gereon Hüttmann, "Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT," Biomed. Opt. Express 3, 1025-1046 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-5-1025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Meyer-Schwinckerath, “Lichtkoagulationen,” Arch. Ophthalmol.156, 2–34 (1954).
  2. Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy. ETDRS report number 9,” Ophthalmology98, 766–785 (1991). [PubMed]
  3. Early Treatment Diabetic Retinopathy Study Research Group, “Photocoagulation for diabetic macular edema. early treatment diabetic retinopathy study report number 1,” Arch. Ophthalmol.103, 1796–1806 (1985). [PubMed]
  4. Branch Vein Occlusion Study Group, “Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. a randomized clinical trial,” Arch. Ophthalmol.104, 34–41 (1986).
  5. Branch Vein Occlusion Study Group, “Natural history and clinical management of central retinal vein occlusion,” Arch. Ophthalmol.115, 486–491 (1997). [PubMed]
  6. A. M. Shah, N. M. Bressler, and L. M. Jampol, “Does laser still have a role in the management of retinal vascular and neovascular diseases?” Am. J. Ophthalmol.152, 332–339.e1 (2011). [CrossRef] [PubMed]
  7. W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962). [PubMed]
  8. S. Y. Schmidt and R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium. regional variation and age-related reduction,” Invest. Ophthalmol. Vis. Sci.27, 1063–1067 (1986). [PubMed]
  9. J. K. Luttrull, D. C. Musch, and M. A. Mainster, “Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema,” Br. J. Ophthalmol.89, 74–80 (2005). [CrossRef]
  10. G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011). [CrossRef] [PubMed]
  11. J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994). [CrossRef]
  12. C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002). [CrossRef] [PubMed]
  13. K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007). [CrossRef]
  14. R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published). [PubMed]
  15. G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004). [CrossRef] [PubMed]
  16. J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006). [CrossRef] [PubMed]
  17. D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  18. L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009). [CrossRef] [PubMed]
  19. C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009). [CrossRef] [PubMed]
  20. J. F. Black, N. Wade, and J. K. Barton, “Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm,” Lasers Surg. Med.36, 155–165 (2005). [CrossRef] [PubMed]
  21. J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001). [CrossRef] [PubMed]
  22. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt.12, 020501 (2007). [CrossRef] [PubMed]
  23. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16, 4376–4393 (2008). [CrossRef] [PubMed]
  24. R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979). [CrossRef] [PubMed]
  25. R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds. (Plenum Press, New York, 1980), 77–97.
  26. D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).
  27. V.-P. Gabel, R. Birngruber, and F. Hillenkamp, Die Lichtabsorption im Augenhintergrund: Mikrospektralphotometrische Bestimmung der wellenabhängigen Lichtabsorption in Pigmentepithel und Chorioidea von Mensch, Rhesusaffe und Chinchillakaninchen, GSF-Bericht A (GSF, München, 1976). [PubMed]
  28. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995). [CrossRef] [PubMed]
  29. F. A. Duck, Physical Properties of tissue—a Comprehensive Reference Book (Academic, London, 1990). [PubMed]
  30. R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng.42, 828–839 (1995). [CrossRef] [PubMed]
  31. M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000). [CrossRef] [PubMed]
  32. B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15, 065002 (2010). [CrossRef]
  33. G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005). [CrossRef] [PubMed]
  34. H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).
  35. M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.
  36. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011). [CrossRef] [PubMed]
  37. J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (3892 KB)     
» Media 2: MPG (3888 KB)     
» Media 3: MPG (3881 KB)     
» Media 4: MPG (3892 KB)     
» Media 5: MPG (3895 KB)     
» Media 6: MPG (3895 KB)     
» Media 7: MPG (3895 KB)     
» Media 8: MPG (3885 KB)     
» Media 9: MPG (3445 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited