OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 1116–1126

Characterizing the point spread function of retinal OCT devices with a model eye-based phantom

Anant Agrawal, Megan Connors, Alexander Beylin, Chia-Pin Liang, David Barton, Yu Chen, Rebekah A. Drezek, and T. Joshua Pfefer  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 5, pp. 1116-1126 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed, fabricated, and tested a nanoparticle-embedded phantom (NEP) incorporated into a model eye in order to characterize the point spread function (PSF) of retinal optical coherence tomography (OCT) devices in three dimensions under realistic imaging conditions. The NEP comprises a sparse distribution of highly backscattering silica-gold nanoshells embedded in a transparent UV-curing epoxy. The commercially-available model eye replicates the key optical structures and focusing power of the human eye. We imaged the model eye-NEP combination with a research-grade spectral domain OCT system designed for in vivo retinal imaging and quantified the lateral and axial PSF dimensions across the field of view in the OCT images. We also imaged the model eye-NEP in a clinical OCT system. Subtle features in the PSF and its dimensions were consistent with independent measurements of lateral and axial resolution. This model eye-based phantom can provide retinal OCT device developers and users a means to rapidly, objectively, and consistently assess the PSF, a fundamental imaging performance metric.

© 2012 OSA

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.4850) Imaging systems : Optical transfer functions
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.4800) Other areas of optics : Optical standards and testing

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: January 18, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 20, 2012
Published: April 26, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

Anant Agrawal, Megan Connors, Alexander Beylin, Chia-Pin Liang, David Barton, Yu Chen, Rebekah A. Drezek, and T. Joshua Pfefer, "Characterizing the point spread function of retinal OCT devices with a model eye-based phantom," Biomed. Opt. Express 3, 1116-1126 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008). [CrossRef]
  2. R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE7567, 756702, 756702-7 (2010). [CrossRef]
  3. IEC International Standard 62464–1:2007, “Magnetic resonance equipment for medical imaging—part 1: determination of essential image quality parameters” (International Electrotechnical Commission, Geneva, Switzerland, 2007).
  4. IEC International Standard 61391–1:2006, “Ultrasonics—Pulse-echo scanners—part 1: techniques for calibrating spatial measurement systems and measurement of system point-spread function response” (International Electrotechnical Commission, Geneva, Switzerland, 2006).
  5. ISO/IEC International Standard 9919:2005(E), “Medical electrical equipment—particular requirements for the basic safety and essential performance of pulse oximeter equipment for medical use” (International Organization for Standardization, Geneva, Switzerland, 2005).
  6. ISO International Standard 8600–5:2005, “Optics and photonics—medical endoscopes and endotherapy devices—part 5: determination of optical resolution of rigid endoscopes with optics” (International Organization for Standardization, Geneva, Switzerland, 2005).
  7. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003). [CrossRef]
  8. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  9. P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol.56(9), 2855–2871 (2011). [CrossRef] [PubMed]
  10. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010). [CrossRef] [PubMed]
  11. A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006). [CrossRef] [PubMed]
  12. P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008). [CrossRef]
  13. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010). [CrossRef] [PubMed]
  14. P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011). [CrossRef]
  15. P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011). [CrossRef] [PubMed]
  16. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett.32(11), 1441–1443 (2007). [CrossRef] [PubMed]
  17. T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett.35(10), 1683–1685 (2010). [CrossRef] [PubMed]
  18. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010). [CrossRef] [PubMed]
  19. R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010). [CrossRef]
  20. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008). [CrossRef] [PubMed]
  21. S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited